zakaz@inmarkon.ru +7-908-583-25-96

ооо Компания "Инмаркон"

ОКП 42 7612 0296 07

УДК 620.179.16

ДЕФЕКТОСКОП УЛЬТРАЗВУКОВОЙ УД9812 Версия программного обеспечения 23.12

Руководство по эксплуатации 46.5537.001.01.000 РЭ

ОГЛАВЛЕНИЕ

1	Ha	зна	чение ультразвукового дефектоскопа УД9812	4
2	Te	хни	ческие характеристики	5
3	Ко	мпл	ект поставки	9
4	Te	хни	ческое описание ультразвукового дефектоскопа УД9812	.10
4.	1	Изо	бражение ультразвуковых сигналов. Развертка типа А	10
4.	2	Уст	ановка чувствительности	.10
4.	3	Уро	вни чувствительности	.12
4.	4	Отс	чет амплитуды сигнала	.13
4.	5	Уст	ройство системы временной регулировки чувствительности	.15
4.	6	Сел	ектор сигналов	.20
4.	7	Изм	еритель задержки	.21
4.	8	Глу	биномер	.22
4.	9	Авт	оматический сигнализатор дефектов	.24
5	Op	ган	ы управления и индикации, устройство меню прибора	.26
6	Me	еню	режима работы «Настройка»	.30
7	Me	еню	режима работы «УЗ контроль»	.30
8	Pez	жим	г г	.30
9	Ин	стр	укция по эксплуатации	.32
9.	1	Вкл	ючение и выключение прибора	.32
9.	2	Coo	бшение о разряле аккумулятора.	33
9	3	Сис	тема оперативной помощи работы с прибором	34
9	2 4	Hac	тройка прибора	34
).	94	1	Электроакустический тракт	34
	94	2	Установка лиапазонов отображения сигналов Меню «Экран»	39
	94	.2	Установка измеряемых параметров ультразвуковых сигналов Меню «Селектор»	41
	94	.5	у отановка измерженых параметров ультразвуковых от налов. тестю «селектор» Настройка глубиномера общие заменания	45
	9.4		Настройка глубиномера в стиле «Авторасцет»	45
	9.7	.5	Настройка глубиномера в стиле «Таблициний»	18
	9. 1 9.1	.0 7		18
	0.4	۰.7 ۲	Определение времени задержки волн в прямом ПОП	50
	9.4	0	Определение точки ввода и времени задержки волн в наклонном пот	50
	9.4	.9	преобразователя	50
	Q /	10	Автоматический сигнализатор цефектов АСП#1	52
	9.4	11	Автоматический сигнализатор дефектов АСД#1	54
	9.4	12	Автоматический сигнализатор дефсктов АСД#2	50
	9.4	12	Настройка ВРИ в стиде «Рудной»	60
	0.4	11	Настройка ВРИ в стиле «Геор Расцет»	63
	9.4	15		.05 т
	9.4	.15	иколом и ADI диограммам	4 65
	0.4	16	Шкалам и АГД диаграммам	71
	9.4	17	Зополника часов и календаря. У правление будильниками	72
0	9.4 5	.1/ Про	запоминание, загрузка и стирание настроек	.12
9.	J 05	11p0	Опаралици исполниционального монтроля изделии	.10
	7.3 0 5	ו. כ	Изматочно оминисто контроля	.1ð
	9.5 0 5	.2	измерение амплитуды эхосигнала и координат дефекта	.19
	9.5	.5	качественное сравнение эхосигналов. Функция «запомнить»	.ðU
	9.5	.4 5	Определение условных размеров дефекта	.ð1
	9.5	.5	запоминание результатов контроля	.84
	9.5	.6	Просмотр фаилов ультразвукового контроля	.86

	9.5.7	Меню «Файл XXX»	87
	9.5.8	Меню «Карта памяти»	88
	9.5.9	Меню «Селектор»	90
	9.5.10	Меню «Функции»	90
9.6	б Изм	ерение акустических характеристик материалов. Аттестация образцов	91
	9.6.1	Прецизионные измерения времени прохождения ультразвуковых сигналов в СО	91
	9.6.2	Определение затухания волн в материале	93
10	Повер	ка дефектоскопа УД9812	97
10	.1 Опе	рации поверки	97
10	.2 Cpe	дства поверки	97
10	.3 Tpe	бования к квалификации поверителя	98
10	.4 Tpe	бования безопасности	98
10	.5 Усл	овия поверки	98
10	.6 Прс	рведение поверки	98
	10.6.1	Внешний осмотр	98
	10.6.2	Опробование	99
	10.6.3	Определение параметров зондирующего импульса	99
	10.6.4	Определение максимальной чувствительности приемника	100
	10.6.5	Определение полосы пропускания приемника	102
	10.6.6	Определение параметров амплитудной характеристики приемного тракта	103
	10.6.7	Определение погрешности измерения отношения амплитуд сигналов на входе	
		приемника	105
	10.6.8	Определение динамического диапазона системы временной регулировки	
		чувствительности	106
	10.6.9	Определение погрешности пороговых индикаторов АСД#1, АСД#2	107
	10.6.10) Определение погрешности глубиномера	108
	10.6.11	Определение частоты ультразвуковых колебаний ПЭП	111
	10.6.12	2 Определение длительности эхосигнала ПЭП	112
	10.6.13	3 Определение длительности реверберационно-шумовой характеристики (РШХ)	113
	10.6.14	4 Определение условной чувствительности	115
	10.6.15	5 Определение точки ввода и стрелы наклонных преобразователей	115
	10.6.16	5 Определение углов ввода ультразвуковых преобразователей	116
	10.6.17	7 Проверка работоспособности информационной системы дефектоскопа	117
10	.7 Офо	ормление результатов поверки	118
11	Неисп	равности и методы их устранения	118
12	Маркі	ирование и пломбирование прибора	119
13	Прави	ла хранения и транспортирования прибора	119
14	Гаран	тийные обязательства и сведения о рекламациях	119
Пр	иложе		120
15	IIPOT	ОКОЛ ПОВЕРКИ	120
Ilp	иложе	ние 2	122
16	Табли	ца скоростей продольных ультразвуковых волн в сталях	122
17	Табли	ца скоростей продольных ультразвуковых волн в сплавах на основе титана	122
18	Табли	ца скоростей продольных ультразвуковых волн в сплавах алюминия	123
19	Габли	ца скоростей продольных ультразвуковых волн в сплавах на основе меди	123

1 Назначение ультразвукового дефектоскопа УД9812

Прибор УД9812 представляет собой ручной ультразвуковой дефектоскоп общего назначения. Прибор предназначен для неразрушающего контроля продукции на наличие дефектов типа нарушения сплошности и однородности материала в изделиях из металла и пластмасс.

Дефектоскоп УД9812 обеспечивает проведение неразрушающего контроля отливок, поковок, полуфабрикатов, готовых изделий, сварных соединений и т.д. в диапазоне размеров от 0,5мм до 6м. Прибор производит измерение времени задержки ультразвуковых сигналов, координат дефектов, условных размеров дефектов и отношения амплитуд сигналов от них.

Рис.1.1. Ультразвуковой дефектоскоп УД9812.

Электрический тракт прибора (генератор зондирующих импульсов и приемник) поддерживают работу с любыми согласованными ультразвуковыми пъезопреобразователями с частотой от 0,6 до 12 МГц. Прибор совместим с ультразвуковыми преобразователями зарубежного производства (фирм Krautkramer, Panametrics, Sonatest и др.).

Дефектоскоп снабжен калиброванным аттенюатором и прецизионным измерителем задержки сигналов. Это позволяет использовать его для измерения физических характеристик материалов – затухания и скоростей звука.

Дефектоскоп УД9812 создан на современной зарубежной элементной базе. Применение высоких технологий позволило резко сократить размеры и вес прибора и одновременно увеличить скорость обработки данных. Кроме того, в дефектоскопе реализован ряд новых технических идей.

На передней панели прибора имеется однопроводный интерфейс, предназначенный для считывания данных из ультразвуковых преобразователей. Каждый преобразователь, поставляемый в комплекте с дефектоскопом, содержит встроенную микросхему памяти, в которую записан тип, номер преобразователя и его параметры. Считывание данных происходит автоматически, если соединить контакты интерфейса. На основе этих данных производится автоматическая настройка генератора зондирующих импульсов и приемника. Дополнительно

информация о преобразователе записывается в файлы настройки и в файлы результатов контроля.

В приемнике акустических сигналов УД9812 установлены цифровые фильтры реального времени, которые формируют его амплитудно-частотную характеристику. Общая производительность фильтров составляет 7,2 миллиарда! операций в секунду. В результате обработанные сигналы имеют низкий уровень шумов, и получена идеальная воспроизводимость частотных характеристик приемника.

Дефектоскоп УД9812 – один из немногих приборов, которые позволяют наблюдать высокочастотные ультразвуковые сигналы и измерять их параметры. В частности, в данном приборе реализован режим измерения задержки ВЧ сигнала методом перехода через ноль – это режим, применяемый в ультразвуковых толщиномерах. Имеется возможность определения частоты эхосигнала.

Прибор содержит энергонезависимую память большого объема 512 МБ, в которую записываются данные настройки и данные ультразвукового контроля. Следует отметить, в приборе сохраняются не картинки экрана, а сами сигналы и параметры дефектоскопа при их получении. Тогда данные контроля становятся «живыми». При просмотре данных контроля на дефектоскопе или на персональном компьютере работает селектор, что позволяет измерить параметры каждого из эхосигналов на развертке и проанализировать их.

Дефектоскоп имеет встроенную систему записи-воспроизведения голосовых сообщений. Файлы настройки и файлы неразрушающего контроля сопровождаются голосовыми комментариями. Общая длительность записи голоса составляет 2 часа 11 мин. Данная система более эргономична по сравнению с вводом информации посредством клавиш.

Связь прибора с персональным компьютером осуществляется через шину USB при скорости передачи данных 12 Мбит/с. Скоростная связь с компьютером резко сокращает время передачи данных контроля. С другой стороны появляется возможность передачи данных прозвучивания в реальном времени. Дефектоскоп УД9812 может использоваться в качестве периферийного устройства ЭВМ в системах ультразвукового контроля.

Дефектоскоп имеет ряд сервисных устройств, таких как часы с календарем, измеритель напряжения и тока аккумулятора, измеритель температуры.

2 Технические характеристики

2.1. Методы ультразвукового контроля, реализуемые дефектоскопом, – эхо-, эхо-теневой, зеркальный, зеркально-теневой.

2.2. Индикатор дефектоскопа – цветной матричный дисплей ТFT 320*240 точек.

2.3. Диапазон прозвучивания изделий из стали эхо-методом - 1 ÷ 6000 мм.

2.4. Диапазоны развертки дефектоскопа.

2.4.1. Диапазон длительности развертки – 3,6 ÷ 2000 мкс.

2.4.2. Диапазон задержки развертки относительно зондирующего импульса –

-2 ÷ +1988мкс.

2.5. Параметры зондирующих импульсов.

2.5.1. Амплитуда на нагрузке 50 Ом – 250 В.

2.5.2. Длительность импульса 40 ÷ 888 нс.

2.5.3. Дискретность регулировки длительности – 6,25 нс.

2.5.4. Полярность зондирующего импульса – отрицательная.

2.6. Параметры приемника.

2.6.1. Диапазоны частот – 0,6÷12 МГц, 0,8÷12 МГц, 1,2÷12 МГц,

0,6÷6,5 МГц, 0,8÷6,5 МГц, 1,2÷6,5 МГц.

2.6.2. Максимальная чувствительность в диапазоне частот – 150 мкВ.

2.6.3. Диапазон регулировки чувствительности – 80 дБ с шагом 0,5 дБ.

2.6.4. Приемник снабжен переключателем диапазонов максимальных воспринимаемых сигналов ±1В и ±10В. В диапазоне ±10В чувствительность приемника уменьшается на 20 дБ.

2.6.5. Приемник выдает высокочастотный или детектированный сигнал.

2.6.6. Используется двухполупериодный амплитудный детектор.

2.6.7. Динамический диапазон детектора +3 ÷ -20 дБ.

2.6.8. Приемник содержит сглаживающие фильтры детектированных сигналов. Имеется возможность отключения фильтра.

2.6.9. Верхние граничные частоты фильтров детектированных сигналов – 12МГц, 6 МГц, 3МГц, 1,5МГц, 0,75МГц.

2.6.10. Приемник содержит систему компенсированной отсечки, которая предназначена для подавления шумов и паразитных сигналов.

2.6.11. Диапазон установки уровня компенсированной отсечки сигналов – 0 ÷ 50% экрана.

2.7. Параметры аналого-цифрового преобразователя ультразвуковых сигналов (АЦП).

2.7.1. Частота дискретизации – 80 МГц.

2.7.2. Период дискретизации – 12,5 нс.

2.7.3. Разрядность АЦП – 8 бит.

2.8. Параметры системы временной регулировки чувствительности (ВРЧ).

2.8.1. Диапазон изменения чувствительности – 80 дБ.

2.8.2. Количество фиксированных установок чувствительности (точек ВРЧ) – 1024.

2.8.3. Шаг установки чувствительности по времени – 2 мкс.

2.8.4. Плавное изменение чувствительности приемника от времени осуществляется программным обеспечением дефектоскопа.

2.8.5. Установка чувствительности производится цифро-аналоговым преобразователем (ЦАП) с разрядностью 12 бит.

2.9. Параметры селектора. Селектор предназначен для выделения какого-либо конкретного сигнала и измерения его характеристик.

2.9.1. Диапазон установки порога обнаружения сигнала – 5 ÷ 95% высоты экрана.

2.9.2. Диапазон установки строба измерения амплитуды – 5 ÷ 60% ширины экрана.

2.9.3. Режимы измерения амплитуды ультразвукового сигнала:

- дБ по шкале экрана,
- % по шкале экрана,
- дБ относительно строба АСД#1,
- дБ относительно строба АСД#2,
- дБ относительно уровня 0дБ усиления приемника.

Обеспечивается одновременное измерение амплитуды в двух из выше перечисленных режимов.

2.9.4. Погрешность измерения амплитуды ультразвуковых сигналов не более ±1 дБ в диапазоне изменения чувствительности 0-80 дБ.

2.9.4. Режимы измерения задержки ультразвукового сигнала – по переднему фронту, по пику сигнала, методом перехода через ноль (только для высокочастотных сигналов).

2.9.5. Селектор производит измерение времени задержки сигнала и определяет погрешность измерений, учитывая дискретность отсчетов сигнала и нестабильность данных при наличии шума. Погрешность измерения задержки ΔT = 0,006 +0,00003*T (мкс).

2.9.6. По данным задержки сигнала селектор производит измерение координат дефекта Н, Х, Y косвенным методом (согласно настройки глубиномера). Расчет координаты Н производится с точностью 0,01 мм, а координат Х, Y – с точностью 0,1 мм. 2.10. Устройство разметки экрана. В дефектоскопе УД9812 установлена автоматическая разметка экрана по вертикали (амплитудная разметка) и по горизонтали (временная разметка).

2.10.1. В режиме отображения детектированных сигналов установлена амплитудная разметка в децибелах. Диапазон от +3 до -20 дБ. Уровень 0 дБ представляет стандартный уровень дефектоскопа. При измерениях амплитуды сигнала в процентах уровень 0 дБ соответствует 100%.

2.10.2. В режиме отображения высокочастотных сигналов установлена разметка экрана по амплитуде в процентах. Середина экрана (линия развертки) составляет 0%. Нижняя граница экрана –100%, верхняя граница +100%. При измерениях амплитуды сигнала в децибелах уровни +100% и –100%, принимаются за 0 дБ.

2.10.3. Имеется 4 режима разметки экрана по горизонтали – в микросекундах, в миллиметрах координаты H, в миллиметрах координаты X или Y. Масштаб разметки выбирается автоматически.

2.11. Устройство глубиномера. Глубиномер предназначен для определения координат дефектов относительно ультразвукового преобразователя. Собственно измерение координат H, X или Y производится селектором. Глубиномер обеспечивает установку параметров преобразования задержки сигнала в координату.

2.11.1. Глубиномер имеет два стиля настройки – «авторасчет» и «табличный».

2.11.2. Стиль «авторасчет» обеспечивает наиболее универсальный способ настройки. Данный стиль заменяет итерационные методики настройки глубиномера. Стиль настройки «авторасчет» состоит в запоминании задержек двух ультразвуковых сигналов с последующей установкой координат отражателей. При этом установка параметров глубиномера происходит автоматически.

2.11.3. Стиль «табличный» реализует непосредственную установку параметров глубиномера, таких как время задержки в преобразователе, угол ввода и скорость звука. Стиль «табличный» аналогичен методикам настройки глубиномера, реализованным в дефектоскопах зарубежного производства.

2.11.4. Параметры глубиномера для стилей «авторасчет» и «табличный» запоминаются раздельно. Поэтому имеется возможность использования и сохранения настройки глубиномера в двух вариантах.

2.12. Устройство автоматических сигнализаторов дефектов (АСД). В приборе УД9812 имеется два сигнализатора АСД#1 и АСД#2. В общем случае происходит срабатывание АСД, если ультразвуковой сигнал пересекает некоторый порог и попадает в определенный интервал времени (строб). На экране дефектоскопа строб АСД изображается в виде горизонтальной линии, начало и конец которой отмечают диапазон строба по времени, а положение линии по вертикали указывает амплитудный порог.

2.12.1. В дефектоскопе УД9812 стробы АСД#1 и АСД#2 привязаны к чувствительности прибора и к времени задержки относительно зондирующего импульса. Такое техническое решение обеспечивает независимость работы АСД от изменения параметров экрана (задержка развертки, ширина развертки, усиление).

2.12.2. Сигнализаторы АСД#1 и АСД#2 работают только с сигналами, находящимися в пределах экрана.

2.12.3. Сигнализаторы АСД#1 и АСД#2 реализуют режимы срабатывания для эхометода (по превышению сигнала над порогом) и для теневого метода (по уменьшению сигнала ниже порога). Кроме того АСД#2 имеет режим захвата сигнала. В данном режиме включается система автоматической регулировки усиления, которая поддерживает выбранный сигнал на уровне строба АСД#2.

2.12.4. Сигнализатор АСД#1 имеет три порога срабатывания, указывающих браковочный уровень, контрольный и поисковый уровни. Сигнализатор АСД#2 имеет только один порог.

2.12.5. При срабатывании АСД#1, АСД#2 прибор выдает световую индикацию и (или) звуковые сигналы. Возможно включение и выключение всех видов сигнализации.

2.13. Меню дефектоскопа УД9812 разделено на две части – «Настройка» и «УЗ контроль». В меню «Настройка» производится установка всех параметров дефектоскопа для реализации той или иной методики ультразвукового контроля. В меню «УЗ контроль» производятся операции неразрушающего контроля изделий – сканирование, обнаружение сигналов от несплошностей, измерение информативных параметров дефектов.

2.14. Меню «УЗ контроль» содержит ряд сервисных функций облегчающих проведение контроля.

2.14.1. Функция «Стоп» - замораживание сигналов. При включении функции «Стоп» продолжает работать селектор, т.е. возможно измерение амплитуды, задержки и координат сигналов от дефектов.

2.14.2. Функция «Запомнить» обеспечивает запоминание и отображение сигналов. После запоминания сигналы, динамически поступающие от преобразователя, накладываются на сохраненные сигналы. Функция «Запомнить» удобна для сравнения сигналов.

2.14.3. Функция «Пробег» - определение огибающей сигналов при сканировании. Анализ огибающей пробега сигнала дает возможность измерения условной ширины и условной высоты дефекта.

2.15. Система записи-воспроизведения голосовых сообщений. Прибор УД9812 содержит динамик, микрофон и звуковой кодек (Codec), что дает возможность дефектоскописту записывать и прослушивать свои голосовые сообщения. Через эту же систему прибор выдает штатные звуковые сигналы.

2.15.1. Диапазон частот голосовых сообщений 150 – 3500 Гц.

2.15.2. Частота дискретизации звуковых сигналов – 8000 Гц.

2.16. Информационная система дефектоскопа. Прибор УД9812 содержит энергонезависимую память 64 мегабайта. В память прибора записываются данные настройки, данные ультразвукового контроля, а также сопутствующая информация.

2.16.1. Данные настройки прибора сохраняются отдельными файлами. Данные настройки содержат все параметры систем дефектоскопа, включая состояние меню. Блок данных настройки – файл – включает в себя параметры дефектоскопа, дату и время настройки, информацию о преобразователе, текстовые комментарии и голосовое сообщение.

2.16.1.1. Количество запоминаемых настроек (файлов) – 32.

2.16.1.2. Количество символов в комментариях – 38.

2.16.1.3. Длительность голосового сообщения – 31,7 с.

2.16.1.4. Общая длительность голосовых сообщений в файлах настройки– 17 мин.

2.16.2. Результаты ультразвукового контроля также образуют блок данных (файл), в который входит данные настройки прибора, буфер отсчетов сигнала, дата и время контроля, информация о преобразователе, текстовые комментарии и голосовое сообщение.

2.16.2.1. Количество файлов данных контроля – 216.

2.16.2.2. Количество символов в комментариях – 38.

2.16.2.3. Длительность голосового сообщения – 31,7 с.

2.16.2.4. Общая длительность голосовых сообщений в файлах – 1час 54 мин.

2.17. Прибор УД9812 содержит ряд сервисных устройств.

2.17.1. Часы и календарь.

2.17.2. Будильник – 2 шт.

2.17.3. Измеритель напряжения и тока заряда (разряда) аккумулятора.

2.17.4. Измеритель температуры внутри прибора.

2.17.5. Запоминание действующей настройки при выключении прибора и загрузка последней настройки при его включении.

2.18. Прибор снабжен последовательным портом ввода-вывода данных USB, с помощью которого результаты измерений передаются в персональный компьютер. Кроме того, имеется возможность передачи данных прозвучивания в реальном времени. По шине USB доступны все функции управления прибором.

2.19. Питание прибора комбинированное от строенного аккумулятора и от сети.

2.19.1. Используется 4 аккумулятора NiMH, тип D, емкостью 8 А*ч.

2.19.2. Время непрерывной работы от аккумулятора - 8 часов.

2.19.3. Сетевой источник питания ИП-9414 входит в комплект поставки прибора.

2.19.4. ИП-9414 работает от сети переменного тока 50 или 60 Гц в диапазоне эффективных напряжений сети 160÷240В.

2.19.5. Сетевой источник питания ИП-9414 снабжен устройством автовыключения при пониженном напряжении сети (менее 160В), схемой защиты от короткого замыкания и устройством автоматического выбора режима – питание прибора и (или) заряд аккумулятора.

2.19.6. ИП-9414 обеспечивает одновременно питание прибора и заряд аккумулятора.

2.19.7. Время заряда аккумулятора при выключенном приборе УД9812 – 5 часов.

2.19.8. Потребляемая мощность от сети переменного тока не более 20 Вт.

2.20. Габаритные размеры дефектоскопа– 185 × 125 × 78 мм.

2.21. Вес с аккумулятором – 1,4 кг.

2.22. Диапазон рабочих температур $-10^{\circ} \div +45^{\circ}$ С. При эксплуатации прибора в теплозащитном кожухе нижняя граница рабочего диапазона температур понижается до -30° С.

2.23. Верхнее значение влажности 98% при температуре 35°С.

2.24. Климатическое исполнение IP65 или категория изделия T2 по ГОСТ 15150-69.

3 Комплект поставки

Комплект поставки ультразвукового дефектоскопа УД9812 приведен в таблице 3.1. В комплект прибора УД9812 могут входить любые типы согласованных ультразвуковых преобразователей с рабочими частотами от 0,4 до 12 МГц.

Таблица 3.1.

	тиенніци в ни
Наименование изделия	Количество
Дефектоскоп ультразвуковой УД9812	1
Аккумуляторы NiMH, тип D (установлены в приборе)	4
Источник питания ИП-9414 с кабелем	1
Наушники	1
Кабель связи с персональным компьютером по шине USB	1
(разъемы А-В)	
Кабель для подключения совмещенных ультразвуковых	1
преобразователей 2BNC-1Lemo	
Кабель для подключения раздельно-совмещенных ультразвуковых	1
преобразователей 2BNC-2Lemo	
Сумка	1
Ремень	1
Теплозащитный кожух ⁽¹⁾	-
Техническая документация	
«Дефектоскоп ультразвуковой УД9812. Руководство по	1
эксплуатации" 46.5537.001.01.000 РЭ	
Методика поверки: раздел 10 «Дефектоскоп ультразвуковой	1
УД9812. Руководство по эксплуатации" 46.5537.001.01.000 РЭ	

«Дефектоскоп ультразвуковой УД9812. Паспорт"	1
CD-ROM или USB FLASH с программным обеспечением	1

ПРИМЕЧАНИЕ 1. Теплозащитный кожух поставляется по отдельному заказу.

ПРИМЕЧАНИЕ 2. Программное обеспечение для персонального компьютера (PC) является условно бесплатным. Все программы персонального компьютера, предназначенные для приема и обработки данных прибора УД9812, **не имеют защиты от копирования** и распространяются без ограничений. Предприятие-изготовитель или предприятие-производитель прибора УД9812 осуществляет только оплачиваемую замену внутренних программ самого прибора УД9812. ПРИМЕЧАНИЕ 3. Комплектация преобразователей, их конкретные типы и количество определяются кругом задач неразрушающего контроля, решаемых на объектах заказчика.

4 Техническое описание ультразвукового дефектоскопа УД9812

4.1 Изображение ультразвуковых сигналов. Развертка типа А

В дефектоскопе УД9812 применяется традиционное изображение ультразвуковых сигналов, развертка типа А. Принцип формирования развертки демонстрирует рисунок 4.1.1.

Развертка типа А представляет собой зависимость амплитуды сигнала от времени, причем отсчет времени производится от зондирующего импульса. Настройка развертки характеризуется двумя параметрами: Тс – время сдвига начала развертки относительно зондирующего импульса (сдвиг), Тр – длительность развертки (ширина). Эти параметры устанавливаются в меню «Экран».

Рис. 4.1.1. Изображение ультразвуковых сигналов.

А) Развертка типа А. Б) Прозвучивание изделия прямым ультразвуковым преобразователем.

4.2 Установка чувствительности

В ультразвуковом контроле принято выражать чувствительность, коэффициент усиления и амплитуду сигнала в относительных единицах, в децибелах. Для справки, отношение амплитуд двух сигналов в децибелах вычисляется следующим образом

A [дБ] =
$$20*Log$$
 (A1/A0),

где, A1 – амплитуда исследуемого сигнала, A0 – амплитуда сигнала, относительно которого производится сравнение, A [дБ] – амплитуда сигнала в децибелах.

Аналогично выражается в децибелах коэффициент усиления

$$K [дБ] = 20*Log (K1),$$

где, К1 – коэффициент усиления, К [дБ] – усиление в децибелах. Здесь коэффициент усиления вычисляется относительно единицы.

Чувствительность дефектоскопа УД9812 выражена в коэффициенте усиления приемного тракта, как это принято в мировой практике. Чувствительность изменяется в пределах от 0 до 80 дБ, что эквивалентно диапазону коэффициентов усиления от 1 до 10 000 раз.

Общая чувствительность прибора Кпр формируется из трех составляющих (Рис. 4.2.1.)

$$Kпр = Ky + K_{apv} + Kврч(t)$$
 [дБ]

Ку – коэффициент усиления [дБ]. Устанавливается в меню "Экран", пункт "усиление".

 K_{apy} — коэффициент усиления системы автоматической регулировки усиления [дБ]. Используется только в режиме "Захват" строба АСД#2. В остальных случаях K_{apy} =0 дБ.

Кврч(t) – коэффициент усиления системы временной регулировки чувствительности [дБ]. Формируется в меню "ВРЧ". Если ВРЧ отключено, Кврч(t) =0 дБ.

Рис. 4.2.1. Формирование чувствительности в ультразвуковом дефектоскопе УД9812. Линия красного цвета – общий коэффициент усиления приемного тракта **Кпр**.

Представленное разделение общей чувствительности **Кпр** по системам (усиление, захват, ВРЧ) обеспечивает гибкость и многовариантность методик настройки чувствительности для проведения неразрушающего контроля.

Установка каждого из параметров **Ку**, **К**_{ару}, **Кврч(t)** производится раздельно, поэтому возможны ситуации, когда их сумма **Кпр** выходит за границы диапазона 0-80 дБ. В таком

случае производится ограничение Кпр на границах 0дБ или 80дБ. Одновременно на экран прибора выводится индикация ограничений.

Рис.4.2.2. Ограничение чувствительности прибора.

Поясним это на примере. Пусть проведена настройка прибора с использованием ВРЧ. На рисунке 4.2.2.А сверху показан график чувствительности прибора, снизу вид экрана. В настроенном состоянии усиление 20дБ. Теперь, для измерения параметров сигнала эхо1 усиление было увеличено до 50 дБ – рисунок 4.2.2.Б. В конце развертки чувствительность превышает максимальную. Общая чувствительность ограничивается на уровне 80дБ. На экране дефектоскопа сверху появляется серая полоса, показывающая, что в данном диапазоне времени чувствительность прибора находится на границе 80 дБ.

Аналогично работает ограничение чувствительности на нижней границе 0дБ. В этом случае серая полоса отображается снизу экрана (на линии развертки).

4.3 Уровни чувствительности

Когда говорят об уровне чувствительности при выявлении и разбраковке дефектов, то подразумевается не только усиление приемного тракта и амплитуда зондирующего импульса, но и некоторый уровень сигнала на экране прибора. В данном случае речь идет об установке амплитудных порогов автоматических сигнализаторов дефектов АСД#1 и АСД#2.

Как правило, в ультразвуковых дефектоскопах амплитудный порог АСД отсчитывается по экрану, например, в процентах (полная высота экрана 100%). Настройка браковочного уровня по амплитуде требует одновременной установки усиления приемника и уровня АСД по экрану. В процессе контроля часто приходится менять усиление. Типичный пример, когда необходимо установить тип дефекта, нужно проанализировать эхосигналы от дефекта при прозвучивании его с разных сторон (амплитуды сигналов сильно отличаются). Дефектоскопист вынужден запоминать усиление приемника при настройке браковочного уровня для того, чтобы потом восстановить его. Это неудобно.

Рис. 4.3.1. Изменение положения уровня АСД#1 в соответствии с изменением усиления приемника.

В приборе УД9812 амплитудные пороги АСД#1 и АСД#2 (браковочный уровень) привязаны к усилению приемника. Они выражаются в децибелах. При изменении чувствительности прибора положение уровня АСД меняется, отслеживая действительное значение предельной амплитуды сигнала.

Поясним это на примере (см. Рис. 4.3.1.). Пусть установлен браковочный уровень АСД#1 32 дБ по эхосигналу от контрольного отражателя и усиление приемника при проведении этой операции тоже было 32 дБ (Рис. 4.3.1.А). Строб АСД#1 расположен на линии 0 дБ разметки экрана. Если теперь уменьшить усиление до 28 дБ, то строб АСД#1 переместится на линию разметки экрана –4 дБ (Рис. 4.3.1.Б). Действительно, мы уменьшили усиление на 4 дБ. Тогда предельно допустимая амплитуда сигнала тоже уменьшится на 4 дБ. Естественно, браковочный уровень АСД#1 должен отслеживать положение предельно допустимой амплитуды сигнала согласно настройки, т.е. тоже должен уменьшится на 4 дБ.

4.4 Отсчет амплитуды сигнала

Измерение амплитуды сигнала в децибелах всегда требует указания уровня, относительно которого производится отсчет, т.е. уровня 0 дБ. Необходимо устанавливать различные уровни отсчета амплитуды в зависимости от задачи измерений. В приборе реализовано 5 вариантов

измерения амплитуды:

- 1. В дБ по экрану.
- 2. В % по экрану.
- 3. В дБ относительно 0 дБ усиления.
- 4. В дБ относительно уровня АСД#1.
- 5. В дБ относительно уровня АСД#2.

Измерение амплитуд сигналов производит селектор (меню «Селектор»), причем допускается одновременное измерение амплитуды в двух из пяти выше перечисленных режимах. Рассмотрим подробно режимы измерений.

Измерение амплитуды сигнала в децибелах по экрану. В данном режиме амплитуда сигнала отсчитывается относительно 0 дБ разметки экрана. При этом не учитывается усиление приемника. Данный режим соответствует визуальному отсчету амплитуды.

Если используется отображение детектированных сигналов, экран имеет разметку в децибелах в диапазоне от +3 до -20 дБ. Уровень 0 дБ представляет стандартный уровень дефектоскопа. Если же отображаются высокочастотные сигналы, середина экрана (линия развертки) составляет 0%. Нижняя граница экрана -100%, верхняя граница +100%. При измерениях амплитуды сигнала в децибелах уровни +100% или -100%, принимаются за 0 дБ.

Измерение амплитуды сигнала в процентах по экрану. Этот режим аналогичен предыдущему с той лишь разницей, что амплитуда выражается в процентах. Уровень 0 дБ здесь принимается за 100%.

Измерение амплитуды сигнала в децибелах относительно 0дБ усиления. В данном режиме учитывается усиление приемника. Ноль децибел отсчета амплитуды соответствует 0дБ разметки экрана при усилении тоже 0дБ. Если, например, установлено усиление 40дБ и амплитуда сигнала по экрану –6дБ, то в данном режиме будет измерена амплитуда –46дБ. А если амплитуда сигнала по экрану +2дБ, то данный режим даст измерение –38дБ.

В этом режиме за 0дБ принят практически самый большой сигнал, который способен воспринимать дефектоскоп. Поэтому измерение амплитуды других сигналов дает отрицательное значение децибел.

Измерение амплитуды сигнала в децибелах относительно уровней АСД#1 или АСД#2. Эти режимы являются основными при проведении неразрушающего контроля изделий. За 0дБ принимается величина браковочного уровня АСД (#1 или #2) и относительно него производится определение амплитуды в децибелах. Если сигнал выше браковочного уровня, результат измерений – положительные децибелы, если ниже – отрицательные децибелы.

Необходимо сделать несколько замечаний относительно измерений амплитуды.

- 1. Селектор дефектоскопа после захвата и обработки сигнала первично определяет его амплитуду в масштабе аналого-цифрового преобразователя, а затем производит расчет амплитуды в децибелах в зависимости от установленного режима. Поэтому производится измерение амплитуды сигнала, если только его пик находится в пределах экрана. Если же амплитуда сигнала выходит за границу экрана, измерения невозможны.
- Дефектоскоп имеет два режима отображения сигналов детектированные и высокочастотные. Коэффициент передачи приемного тракта отличается в этих режимах, поэтому нельзя сопоставлять измерения амплитуды высокочастотного сигнала с детектированным, даже если выбран одинаковый режим измерений.
- 3. Приемный тракт дефектоскопа содержит переключатель диапазонов входных сигналов ±1В или ±10В. Переход от диапазона ±1В в диапазон ±10В создает дополнительное ослабление сигналов на 20дБ. При измерении амплитуды состояние переключателя не учитывается.
- 4. Чувствительность прибора, скорректированная посредством системы временной регулировки чувствительности, также не учитывается при измерении амплитуды сигналов. Это правильно, т.к. основное назначение системы ВРЧ выравнивание амплитуд сигналов от равновеликих отражателей, расположенных на различной глубине, или, в сущности, обеспечение амплитудного порога браковки (строба АСД) в виде горизонтальной линии на экране.
- 5. Чувствительность прибора, скорректированная системой автоматической регулировки усиления в режиме "Захват" строба АСД#2, не учитывается при измерениях амплитуды. Данная система предназначена для поддержания реальной чувствительности прибора при изменении качества акустического контакта. Режим "Захват" строба АСД#2 в основном используют при работе со специализированными преобразователями.

4.5 Устройство системы временной регулировки чувствительности

Известно, что амплитуда эхосигнала зависит от расстояния между преобразователем и дефектом. В ближней зоне ультразвукового поля ПЭП эта зависимость достаточно сложная, а в дальней зоне амплитуда эхосигнала монотонно уменьшается с увеличением расстояния между ПЭП и дефектом. Это связано с расхождением ультразвукового пучка преобразователя, наличием поглощения и рассеяния волн в материале изделия. В методиках неразрушающего контроля требуется проводить разбраковку дефектов по их размеру. В большинстве случаев используется какая-либо конкретная модель дефекта, например, плоскодонный отражатель, угловой отражатель (зарубка), боковое цилиндрическое отверстие, пропил и т.д. Для каждой модели реализуется своя зависимость амплитуды эхосигнала от расстояния.

Если настроить браковочный уровень чувствительности по эхосигналу от контрольного отражателя в образце, то для разбраковки дефектов по размеру нужно установить порог АСД в виде кривой линии, которая учитывает зависимость амплитуды эхосигнала от расстояния. Это обстоятельство демонстрирует рисунок 4.5.1.А.

В ультразвуковых дефектоскопах применяется временная регулировка чувствительности. Ее задача – изменить чувствительность прибора таким образом, чтобы амплитуды эхосигналов от отражателей одинаковой формы и размеров были равны независимо от расстояния (Рис. 4.5.1.Б). Тогда браковочный уровень (строб АСД) представляет собой горизонтальную линию на экране дефектоскопа. Для этого система ВРЧ должна изменять коэффициент усиления прибора со временем.

Назначение системы временной регулировки чувствительности – выравнивание амплитуд сигналов от отражателей одинаковой формы и размеров, расположенных на различной глубине. На практике выравнивание амплитуд всегда производится в некотором интервале задержек эхосигналов, т.е. в зоне ВРЧ.

Рис. 4.5.1. Принцип работы системы временной регулировки чувствительности.

Рис. 4.5.2. Формирование кривой ВРЧ в стиле «Ручной».

В приборе УД9812 реализовано два стиля настройки системы ВРЧ - «Ручной» и «Теор. Расчет». Кроме того, имеется возможность включения и выключения всей системы ВРЧ. Параметры настройки для обоих стилей хранятся отдельно в памяти прибора, и при запоминании настройки также сохраняются независимо.

Последовательность настройки в каждом из стилей обсуждается в П8. В данном разделе рассматривается принцип действия и устройство системы ВРЧ.

Стиль ВРЧ «Ручной». В данном стиле кривая ВРЧ задается с помощью 16 точек. Для каждой точки устанавливается задержка и усиление ВРЧ. Кривая ВРЧ представляет собой набор линейных отрезков, соединяющих точки. На рисунке 4.5.2. показана кривая ВРЧ в стиле «Ручной». На ней отмечены параметры настройки для точки 09 (К₉, t₉). В диапазоне от зондирующего импульса до точки ВРЧ 01 (начало кривой) усиление постоянно и равно усилению в точке 01. В диапазоне от точки ВРЧ 16 (конец кривой) и до конца диапазона прозвучивания усиление ВРЧ равно усилению в точке 16.

Меню ВРЧ «Ручной» обеспечивает выбор любой из 16 точек и установку ее параметров. Существуют некоторые ограничения в настройке:

- усиление в точке ВРЧ в сумме с коэффициентом усиления Ку ограничивается в диапазоне 0
 80 дБ, т.е. в диапазоне усиления приемника,
- минимальный дискрет установки задержки точки ВРЧ 2мкс,
- минимальная задержка точки 01 (начальная точка) относительно зондирующего импульса 4 мкс,
- минимальная задержка между соседними точками ВРЧ 6 мкс,
- максимальная задержка точки 16 (последней точки) 1998мкс, напомним, что диапазон прозвучивания 2000мкс.

В остальном параметры точек ВРЧ могут быть установлены произвольно.

Стиль «Ручной» предназначен для настройки ВРЧ по эхосигналам от контрольных отражателей, расположенных на различной глубине. Для этой цели используются специализированные образцы, например, образцы с плоскодонными отражателями или с боковыми цилиндрическими отверстиями. Последовательность настройки определяется комбинацией отражателей в образце. Обычно с каждым отражателем (эхосигналом) сопоставляется одна точка настройки.

Дефектоскоп автоматически производит перерасчет кривой ВРЧ при изменении параметров какой-либо точки. Качество настройки контролируется визуально (по экрану).

Стиль ВРЧ «Теор. Расчет». Стиль теоретический расчет предназначен для замены технологий контроля с использованием АРД диаграмм, АРД шкал, SKH диаграмм и т.п. Коррекция усиления приемника во времени (от расстояния до дефекта) в данном стиле производится на основании известных теоретических зависимостей (по формулам).

Стабильная, хорошо воспроизводимая связь амплитуды эхосигнала с расстоянием до дефекта наблюдается при его прозвучивании в дальней зоне ультразвукового поля преобразователя. Сразу необходимо отметить, что стиль «Теор. Расчет» можно применять только в методиках контроля, где обеспечивается прозвучивание дефектов в дальней зоне ультразвукового поля ПЭП.

Формулы расчета амплитуд эхосигналов в различных вариантах прозвучивания представлены в Табл. 4.5.1.

Формулы Табл. 4.5.1. в качестве аргументов содержат следующие величины:

R – расстояние между преобразователем и отражателем в пределах зоны ВРЧ

 \mathbf{R}_0 – расстояние между ПЭП и отражателем в начале зоны ВРЧ

δ - коэффициент затухания, учитывающий поглощение и рассеяние волн в материале

N⁰	Преобразоват	Отража-	Формула, тип кривой ВРЧ	Примеры
	ель	тель		
1	ПЭП	Компакт-		Прозвучивание прямым или
	объемных	ный		наклонным ПЭП,
	волн		$A/A_0 = Exp[2\delta(R_0-R)] * (R_0/R)^2$	Отражатель небольшого размера
				– сфера, пора, шлаковое
			Тип кривой \mathbf{R}^{2}	включение, плоскодонное
				отверстие, зарубка.
		Протяжен-		Прозвучивание прямым или
		ный		наклонным ПЭП,
		$A/A_0 = Exp[2\delta(R_0-R)]*(R_0/R)^{3/2}$	Длинный отражатель	
				небольшого поперечного
			Тип кривой $\mathbf{R}^{3/2}$	размера – боковое
			тип кривои К	цилиндрическое отверстие, паз,
				непровар.
		Бесконеч-		Прозвучивание прямым ПЭП,
		ный		отражатель – донная
			$A/A_0 = Exp[2\delta(R_0 - R)]^*(R_0/R)$	поверхность.
				Прозвучивание наклонным ПЭП,
			Тип кривой R ^1	отражатель – угол образца.

Габл. 4.5.1. Теоретические зависимости амплитуды эхосигнала от расстояни
--

r		1		1
2	ПЭП	Компакт-		ПЭП волн Рэллея,
	поверхност-	ный		отражатель небольшого размера
	ных волн		$A/A_0 = Exp[2\delta(R_0 - R)]^*(R_0/R)$	на поверхности-трещина, капля
	(волн Рэлея)			масла, вертикальное отверстие.
	или в настном		Тиц крирой \mathbf{P}^{1}	ПЭП волн Лэмба,
			тип кривои к	отражатель небольшого размера
				на поверхности или в сечении
	волн в тонких			пластины – трещина, капля
	пластинах			масла, вертикальное отверстие,
	(волны			пора.
	Лэмба)	Протяжен-		ПЭП волн Рэлея,
		ный		отражатель на поверхности
			$A/A_0 = Exp[2\delta(R_0-R)]*(R_0/R)^{1/2}$	пересекает весь ультразвуковой
				пучок – торец изделия, длинная
				трещина, паз.
			The sum of $\mathbf{p}^{1/2}$	ПЭП волн Лэмба,
			тип кривои к	отражатель на поверхности или в
				сечении пластины пересекает
				весь ультразвуковой пучок –
				торец изделия, длинная трещина,
				паз, волосовина.
3	ПЭП волн в	Нет		Любая акустическая
	прутках или в	деления на	$A/A_0 = Exp[2\delta(R_0-R)]$	неоднородность на поверхности
	проволоке	типы		или в сечении изделия.
	1	отражате- лей	Тип кривой $\mathbf{R}^{^0}$	

В формулах Табл. 4.5.1. проведено нормирование амплитуды эхосигнала от отражателя **A**, которая меняется с расстоянием, на амплитуду опорного уровня **A**₀. Система ВРЧ корректирует чувствительность в некотором интервале времени. Границы данного интервала соответствуют диапазону расстояний до дефектов. Коррекция производится, начиная с некоторого расстояния. **R**₀ – начало зоны ВРЧ и далее. Величина **A**₀ представляет собой амплитуду эхосигнала от отражателя данного типа и размера на расстоянии **R**₀, т.е. в начале зоны ВРЧ.

Система ВРЧ формирует временную зависимость коэффициента усиления приемника **Кврч(t)**. В стиле "Teop. Расчет" выделяется зона ВРЧ от точки «начало» (t1) до точки «конец» (t2) – рисунок 4.5.3. В диапазоне от зондирующего импульса до точки начало усиление постоянно, его задает величина – сдвиг (дБ). Усиление приемного тракта корректируется в пределах зоны ВРЧ согласно выбранной теоретической зависимости. Точка «начало» указывает расстояние **R**₀, от которого начинается компенсация уменьшения амплитуды эхосигнала. Усиление корректируется (увеличивается) до точки конец. В пределах зоны ВРЧ формируется перепад усиления (дБ). От точки «конец» и до самого конца диапазона прозвучивания (2 мс) усиление постоянно и равно сумме сдвига и перепада усиления. При изменении сдвига [дБ] вся кривая ВРЧ перемещается вверх или вниз, см. Рис. 4.5.3.

В меню «Тип кривой ВРЧ» задаются следующие параметры теоретической зависимости: собственно тип кривой – \mathbf{R}^{2} , $\mathbf{R}^{3/2}$, \mathbf{R}^{1} , $\mathbf{R}^{1/2}$, \mathbf{R}^{2} , коэффициент затухания [дБ/м] и скорость звука [м/с]. При установке типа кривой ВРЧ следует руководствоваться таблицей 4.5.1. Коэффициент затухания устанавливают по справочным данным о материале или его определяют экспериментально. Отметим, что скорость звука в данном меню никак не связана с параметрами настройки глубиномера. Значение скорости здесь представляет собой физическую величину, с учетом которой производится расчет ослабления сигнала от времени. Скорость звука зависит от используемого типа волн. Ее нужно вводить еще раз.

Рис. 4.5.3. Формирование кривой ВРЧ в стиле "Теор. Расчет".

Меню "Teop. Pacчet" обеспечивает выбор и установку временного положения точек начала и конца зоны ВРЧ (t1, t2). В каждой из точек производится установка усиления. Причем, в точке «начало» (t1) задается сдвиг кривой ВРЧ, а в точке «конец» редактируется перепад кривой ВРЧ (см. Рис. 4.5.3.). Установка сдвига в точке «начало» перемещает всю кривую ВРЧ вверх или вниз. При редактировании усиления в точке «конец» изменяется только перепад кривой ВРЧ. Перепад кривой ВРЧ регулируется путем коррекции затухания [дБ/м]. Если коэффициент затухания известен и установлен, нельзя редактировать усиление в точке «конец».

При изменении какого-либо из параметров системы ВРЧ дефектоскоп автоматически производит перерасчет всей кривой. На экране прибора изображается одновременно развертка эхосигналов и кривая ВРЧ, что позволяет визуально отслеживать качество настройки.

Стиль ВРЧ "Ручной", в основном, предназначен для настройки системы ВРЧ при прозвучивании изделий в ближней зоне ультразвукового поля ПЭП, т.е. малогабаритных изделий, а стиль "Teop. Pacчet" – при прозвучивании крупногабаритных изделий в дальней зоне ультразвукового поля ПЭП.

ПРИМЕЧАНИЯ:

- 1. При выборе меню «ВРЧ» отключаются стробы АСД#1 и АСД#2. Сигнализация дефектов не выдается.
- 2. Выбор меню «ВРЧ» отключает режим «Захват» АСД#2, если он был установлен. Величина коррекции усиления режима «Захват» устанавливается в ноль.
- 3. Если система ВРЧ включена, во всех режимах работы прибора действует настройка ВРЧ в соответствии с выбранным стилем. Стиль настройки отображается в строке усиления в верхней части экрана.
- 4. В случае выхода общего усиления приемника за пределы диапазона 0 80 дБ появляется серая полоса на верхней или нижней линии развертки. При выборе меню ВРЧ эта

индикация выключается. Вместо нее выводится индикация на графике кривой ВРЧ. При выходе за пределы диапазона 0 – 80 дБ положение линии ВРЧ ограничивается и данный отрезок линии подсвечивается шумовой канвой.

4.6 Селектор сигналов

Часто на экране дефектоскопа наблюдается несколько эхосигналов. Возникает задача измерения параметров какого-либо из них. Для этой цели служит селектор – устройство выделения сигнала. В дефектоскопе УД9812 селектор реализован программным способом.

Селектор работает следующим образом, Рис.4.6.1.. На экране дефектоскопа отображается символ селектора – буква S в рамке (Рис.4.6.1.). Положение символа селектора по вертикали задает амплитудный порог поиска сигнала, а его положение по горизонтали определяет начальную точку поиска по времени. Амплитудный порог селектора изображается движущейся горизонтальной линией. Поиск сигнала происходит слева направо от символа селектора до конца развертки.

Если эхосигнал превышает порог селектора в области поиска, он обнаружен. Далее производится анализ сигнала от точки обнаружения в некотором интервале времени. Данный интервал задает маркер захвата. Маркер захвата изображается в виде отрезка горизонтальной линии, длина которого показывает интервал времени, а положение маркера по вертикали указывает амплитуду максимального сигнала.

Измерение параметров эхосигнала, задержки и амплитуды, производится в пределах маркера захвата.

Амплитуда сигнала измеряется в два этапа. Вначале находится максимальный отсчет сигнала в пределах маркера захвата, затем проводится вычисление амплитуды в децибелах. Результат (дБ) зависит от того, какой уровень принят за 0 дБ, т.е. определяется режимом измерения.

Измерение задержки сигнала производится различными способами: по фронту сигнала, по пику или методом перехода через ноль. Момент времени, в котором проведено измерение задержки, отображается на экране с помощью маркера задержки.

Все параметры селектора, амплитудный порог, положение по горизонтали, ширина маркера захвата, устанавливаются в меню "Селектор".

Рис.4.6.1. Захват эхосигнала с помощью селектора.

4.7 Измеритель задержки

Измеритель задержки является элементом селектора. В дефектоскопе УД9812 реализовано три способа измерения задержки ультразвуковых сигналов: по фронту сигнала, по пику и методом перехода через ноль. Измерение задержки производится селектором (меню «Селектор»). Принцип измерения для первых двух способов демонстрирует рисунок 4.7.1.

Способ измерения задержки эхосигнала по фронту реализован в большинстве моделей ультразвуковых дефектоскопов. Здесь время задержки определяется от момента излучения зондирующего импульса до момента превышения эхосигнала над порогом селектора – **Т**_ф.

Измерение задержки по пику производится в точке максимума эхосигнала – **T**_п. Причем нахождение максимума осуществляется в пределах маркера захвата селектора (см. П 4.6).

Для детектированных эхосигналов значения задержек T_{ϕ} и T_{n} отличаются приблизительно на $\frac{1}{2}$ их длительности.

Рис. 4.7.1. Измерение задержки эхосигнала «по фронту» и «по пику».

Измерения задержки «по пику» и «по фронту» могут использоваться для анализа высокочастотных сигналов. Алгоритм измерений здесь такой же, но есть некоторые отличия. Высокочастотный сигнал имеет положительные и отрицательные полупериоды. Если порог селектора установить положительным, то в режиме «по фронту» измерение производится в точке превышения сигнала над порогом, а в режиме «по пику» задержка определяется на полупериоде с максимальной амплитудой. Если же порог селектора отрицательный, измерение задержки «по фронту» производится в момент понижения сигнала под порог и «по пику» находится момент времени с максимальной отрицательной амплитудой сигнала.

Способ измерения задержки по переходу сигнала через ноль поясняет рисунок 4.7.2. В данном случае анализируются только высокочастотные сигналы.

Измерение производится в два этапа. Вначале происходит обнаружение сигнала в момент превышения его над порогом селектора. Затем осуществляется поиск момента времени, в который сигнал переходит нулевое значение. В этот момент времени производится измерение задержки.

На рисунке 4.7.2. изображен процесс измерения в случае положительного порога селектора. Для отрицательного порога измерение задержки происходит аналогично. Сигнал обнаруживается при его уменьшении (ниже порога), а измерение задержки выполняется в ближайшей точке перехода сигнала через ноль (снизу-вверх).

Данный способ измерения задержки обладает высокой стабильностью, т.к. положение точки перехода сигнала через ноль не зависит от амплитуды сигнала.

Значение задержки сигнала, измеренное в различных режимах (разными способами), будет отличаться. Это обстоятельство нужно учитывать при настройке глубиномера, т.к. исходной величиной для расчета координат дефекта X, Y и H является задержка.

4.8 Глубиномер

Глубиномер ультразвукового дефектоскопа реализует косвенный метод измерений координат дефекта. Глубиномер использует время задержки эхосигнала, измеренное селектором, для расчета координат. Расчетные соотношения (формулы) во всех случаях учитывают время пробега волн в преобразователе и масштаб перехода от времени (микросекунды) к координате (миллиметры). Обозначение координат дефекта в двух основных схемах прозвучивания представлено на рисунке 4.8.1. При использовании прямого преобразователя измеряется глубина залегания дефекта **H**. С помощью наклонного преобразователя находят две координаты отражателя **X** и **Y**.

В дефектоскопе УД9812 глубиномер устроен следующим образом. Меню «Глубиномер» в режиме «Настройка» осуществляет операции настройки глубиномера, а измерение координат производится селектором.

Рис. 4.8.1. Схемы прозвучивания отражателей и обозначение координат дефекта. А) Прямым преобразователем. Б) Наклонным преобразователем.

Меню «Глубиномер» содержит два стиля (два способа) настройки «Табличный» и «Авторасчет».

22

Стиль «Табличный». Здесь параметры настройки непосредственно устанавливаются в меню. Для прямого преобразователя вводится время задержки в ПЭП – Th (мкс), и скорость продольных волн в изделии – CL (м/с). В дальнейшем расчет глубины залегания дефекта проводится по формуле

$$H = (CL/2)*(T - Th).$$

Т – время задержки эхосигнала, измеренное селектором.

Для наклонного преобразователя вводятся следующие параметры настройки: время задержки в ПЭП – **Тху** (мкс), скорость поперечных волн в изделии – **СТ** (м/с) и угол ввода - **α** (град). Селектор, определив время задержки **Т**, производит расчет координат по формулам

 $X = (CT/2)*Sin(\alpha)*(T - Txy),$ $Y = (CT/2)*Cos(\alpha)*(T - Txy).$

Значения параметров настройки для каждого преобразователя должны быть предварительно измерены на стандартных образцах, например, СО-2, СО-3 или V1, V2 при работе по зарубежным методикам контроля.

Диапазоны значений параметров настройки в стиле «Табличный» показаны ниже.

Th = $0 \div 60$ (мкс), **CL** = $500 \div 8000$ (м/с),

Тху = $0 \div 60$ (мкс), **СТ** = $500 \div 8000$ (м/с), $\alpha = 1 \div 89$ (град).

При включении прибора данные параметры установлены по умолчанию

Txy = 7,000 (мкс), **CT** = 3260 (м/с), α = 50,00 (град).

Стиль «Табличный» реализует методику настройки глубиномера, которая широко используется в дефектоскопах зарубежного производства.

Стиль «Авторасчет». Это наиболее универсальный способ настройки. Здесь расчет координат дефекта производится по формулам

$$H = Mh^{*}(T - Th),$$

 $X = Mx^{*}(T - Tx),$
 $Y = My^{*}(T - Ty).$

В расчетах участвуют параметры настройки **Th**, **Tx**, **Ty** (мкс) – время задержки волн в преобразователе для координат **H**, **X**, **Y** соответственно и **Mh**, **Mx**, **My** (мм/мкс) – масштабы преобразования шкалы времени в шкалу координат **H**, **X**, **Y**.

Параметры настройки могут принимать любые значения в диапазонах

Th, **Tx**, **Ty**= $0 \div 60$ (мкс), **Mh**, **Mx**, **My** = $0,250 \div 4,000$ (мм/мкс).

При включении прибора параметры установлены по умолчанию

Th = 1,000 (MKC),Tx = 7,000 (MKC),Ty = 7,000 (MKC),,Mh = 2,959 (MM/MKC),Mx = 1,248 (MM/MKC),My = 1,047 (MM/MKC).

Для настройки глубиномера в стиле «Авторасчет» необходимо измерить задержки двух эхосигналов от отражателей с известными координатами. Вначале производится измерение задержек, затем устанавливаются координаты отражателей. Подробное описание операций настройки приведено в П8.4.

Рассмотрим методику настройки, реализованную в приборе. Для всех координат алгоритм настройки одинаковый. Выберем для примера координату **H**. Пусть прямым преобразователем измерены задержки двух донных эхосигналов **T1=7,757**мкс и **T2=14,513** мкс.

Толщина изделия из стали 20мм (лист). Тогда в настроенном состоянии для первого донного эхосигнала (T1) глубиномер должен показывать H1 = 20,0 мм, а для второго донного эхосигнала (T2) координата H2 = 40,0 мм.

В меню установки координат «Настройка H, X, Y» предлагается вначале установить разность координат между отражателями ΔH , а потом координату ближайшего отражателя H1. Очевидно, в нашем случае нужно установить ΔH =20,0 мм, H1 = 20,0 мм.

Когда устанавливается разность координат **ΔН**, прибор автоматически производит расчет

масштаба **Mh**, а когда устанавливается координата **H1**, прибор определяет время задержки в преобразователе.

В данной методике параметры глубиномера рассчитываются автоматически при установке координат. Именно по этой причине стиль назван «Авторасчет».

Стиль «Авторасчет» задуман как основной способ настройки глубиномера. Последовательность настройки идейно проста – запомнить задержки эхосигналов и установить координаты. Данный стиль дает определенную свободу в настройке шкалы глубиномера. Например, для наклонного преобразователя отсчет координаты **Y** можно установить от точки ввода ПЭП, а координату **X** определять от передней кромки ПЭП.

Другой пример, при работе с наклонным преобразователем, притертым вдоль или поперек к поверхности трубного элемента, легко настроить координаты **X**, **Y** по эхосигналам от зарубок или углов образца. Причем, отсчет координат устанавливается от передней кромки ПЭП.

Параметры настройки для стилей «Табличный» и «Авторасчет» хранятся отдельно в памяти прибора и при запоминании настройки также сохраняются отдельно. Использование той или иной группы параметров для расчета координат и для формирования разметки экрана по горизонтали определяется назначением стиля в меню «Глубиномер».

4.9 Автоматический сигнализатор дефектов

Автоматический сигнализатор дефектов является сервисным устройством. Его основное назначение – вырабатывать световой и (или) звуковой сигнал при обнаружении акустического сигнала от дефекта. Рассмотрим общие принципы работы АСД.

Рис. 4.9.1. Работа автоматического сигнализатора дефектов для эхометода.

В методиках ультразвукового контроля анализируются не все сигналы, поступающие от преобразователя, а только сигналы, попадающие в некоторый диапазон задержек, в зону контроля.

Система АСД ультразвукового дефектоскопа имеет строб, отмечающий зону ожидания сигналов от дефектов, и один или несколько порогов, по которым производится обнаружение дефектов или оценка их опасности. АСД дефектоскопа поддерживает два метода контроля – эхометод и теневой метод.

В эхометоде ультразвукового контроля, Рис.4.9.1., строб АСД устанавливается на экране дефектоскопа в соответствии с диапазоном глубин залегания дефектов. Порог АСД, вертикальное расположение строба, устанавливается по амплитуде эхосигнала от искусственного отражателя в образце. Если в процессе контроля сигнал от дефекта попадает в строб АСД и превышает порог, выдается световая и (или) звуковая сигнализация. В общем случае в эхометоде используется три пороговых уровня:

- (#1) браковочный уровень,
- (Ф) уровень фиксации (контрольный уровень),
- (П) поисковый уровень.

Браковочный уровень отмечает максимально допустимую амплитуду эхосигнала от дефекта (предельная чувствительность). Если эхосигнал от дефекта превышает браковочный уровень, дефект считают недопустимым, изделие бракуют.

Уровень фиксации обычно устанавливается по амплитуде на 6дБ ниже браковочного. Уровень фиксации предназначен для обнаружения (фиксации) существенных дефектов в изделии. Если эхосигнал от дефекта превышает уровень фиксации, его отмечают в журнале ультразвукового контроля или на дефектограмме. Кроме того, на уровне фиксации определяются условные размеры дефекта.

После полного прозвучивания изделия проводится анализ дефектов с амплитудами эхосигналов выше уровня фиксации. Для принятия решения о качестве изделия используют дополнительные критерии браковки, например, суммарная условная протяженность дефектов, количество допустимых (по амплитуде) дефектов на любые 100м сварного шва и т.д.

Рис. 4.9.2. Работа автоматического сигнализатора дефектов для теневого метода.

Поисковый уровень предназначен для обнаружения эхосигналов от несплошностей в процессе сканирования изделия. Качество акустического контакта преобразователя с изделием заметно ухудшается, когда преобразователь достаточно быстро перемещают по поверхности

изделия. Обычно, для надежного обнаружения эхосигнала, поисковый порог АСД устанавливается по амплитуде на 6дБ ниже уровня фиксации.

Если какой-либо эхосигнал превышает поисковый уровень, сканирование прекращают, находят максимальный эхосигнал от дефекта и, затем, анализируют дефект по уровню фиксации и браковочному уровню.

В теневом методе анализируется амплитуда сигнала прошедшего в изделие, Рис. 4.9.2.

АСД также имеет строб, который захватывает прошедший сигнал. Срабатывание АСД происходит при уменьшении амплитуды сигнала ниже порога, когда появляется тень от дефекта.

В дефектоскопе УД9812 реализовано две системы АСД, обозначенные как АСД#1 и АСД#2. Каждая из систем имеет независимые стробы и может работать эхометодом и теневым методом. Также АСД#1 и АСД#2 выдают световую и звуковую сигнализацию дефектов независимо друг от друга.

Стробы АСД#1 и АСД#2 по амплитуде привязаны к чувствительности прибора и по временному положению устанавливаются относительно зондирующего импульса. Такое техническое решение обеспечивает независимость работы АСД от изменения параметров экрана (задержка развертки, ширина развертки, усиление). АСД#1 и АСД#2 работают только с сигналами, находящимися в пределах экрана.

Сигнализатор АСД#1 имеет три порога срабатывания, указывающих браковочный уровень, уровень фиксации и поисковый уровень. Сигнализатор АСД#2 имеет только один порог.

АСД#2 имеет дополнительно режим захвата сигнала. В данном режиме включается система автоматической регулировки усиления, которая поддерживает выбранный сигнал на уровне строба АСД#2.

Методически система АСД#1 является основной. В большинстве методик контроля рекомендуется использовать АСД#1. Система АСД#2 вспомогательная. Она используется в сложных методиках, когда задействованы обе системы. Например, дефектоскоп позволяет проводить контроль зеркально-теневым методом. Данный метод при контроле листов может быть реализован с помощью одного прямого совмещенного преобразователя. Здесь анализируются эхосигналы от дефектов в теле листа (эхометод) и одновременно донный сигнал (теневой метод). Тогда строб АСД#1 настраивается на работу эхометодом, а строб АСД#2 – теневым методом.

5 Органы управления и индикации, устройство меню прибора

Внешний вид ультразвукового дефектоскопа УД9812 показан на Рис.5.1. Все управление прибором производится с кнопочной клавиатуры.

Включение и выключение дефектоскопа осуществляется кратковременным нажатием на кнопку "Вкл-Выкл". При нормальном включении прибора выдается короткий звуковой сигнал, загорается индикатор "Питание" и на экран выводится заставка, с информацией о типе, номере прибора и версии программного обеспечения. Дефектоскоп УД9812 готов к работе и ожидает установку режима работы.

Ультразвуковой дефектоскоп имеет два режима работы «Настройка» и «УЗ контроль». Режим устанавливаются при нажатии на одноименные кнопки (см. Рис.5.1.). В режиме «Настройка» производится установка всех параметров дефектоскопа, необходимых для проведения неразрушающего контроля по какой-либо конкретной методике. В режиме «УЗ контроль» производится поиск, обнаружение дефектов и определение их параметров.

Режим работы отображается в окне, расположенном в верхнем левом углу экрана. В этом же окне выводится дата и время (Рис.5.2.).

Рис.5.1. Органы управления и индикации ультразвукового дефектоскопа УД9812.

В верхнем правом углу экрана расположено окно состояния аккумулятора (Рис.5.2.). Окно содержит две строки.

Верхняя строка отображает состояние аккумулятора. В ней выводится – символ аккумулятора, его напряжение и ток. Положительное значение тока показывает заряд аккумулятора от источника питания ИП-9414, а отрицательное значение – разряд в процессе автономной работы.

В нижней строке выводится символ нагревателя экрана, его состояние (Вкл или Выкл) и температура внутри корпуса прибора (град. С). Нагреватель экрана предназначен для работы прибора при низких температурах. Его рекомендуется включать при температуре окружающей среды ниже -10^{0} С. Температура внутри прибора на $10-15^{0}$ С выше чем температура окружающей среды, т.к. прибор выделяет тепловую энергию при работе электронной схемы.

Сверху в середине экрана выводится строка усиления. Здесь первый символ – стиль настройки системы ВРЧ ("РУЧ" – стиль "Ручной", "Теор" – стиль "Теор. Расчет"). Если система ВРЧ отключена, данный символ не выводится. Второй символ – треугольник – символ усиления. За ним крупным шрифтом следует коэффициент усиления приемника в децибелах. Далее малым шрифтом указана величина коррекции усиления в режиме "Захват" АСД#2, тоже в децибелах. Если данный режим отключен, величина коррекции установлена в ноль.

Под строкой усиления расположено поле световой индикации АСД#1 и АСД#2. Вывод данных в это поле одинаков для обеих систем. Рассмотрим индикацию на примере сигнализатора АСД#1. Если система АСД#1 включена, в данном поле выводится надпись АСД#1. Одновременно на экране отображается строб АСД#1. Если сигнализатор АСД#1 выключен, надписи нет. Если включена световая индикация и произошло срабатывание, то на

надпись АСД#1 накладывается мигающий прямоугольник красного, желтого или зеленого цвета.

Рис.5.2. Внешний вид экрана дефектоскопа УД9812. Окно режима работы и окно состояния аккумулятора.

Рис.5.3. Внешний вид экрана дефектоскопа УД9812. Вызов управляющего меню «Экран».

В каждом из режимов «Настройка» и «УЗ контроль» есть главное меню, которое размещается в нижней части экрана. Пункты главного меню расположены над кнопками F1, F2, F3, F4. Вызов пунктов главного меню осуществляется нажатием на эти кнопки.

В режиме «**Настройка**» установлены следующие пункты главного меню: «Электроакустический тракт», «Экран», «Селектор», «Глубиномер», «АСД #1», «АСД #2», «ВРЧ», «Часы Будильник».

Главное меню режима «Настройка» имеет 8 пунктов, и только 4 из них могут одновременно отображаться на экране. Смещение пунктов главного меню вправо или влево (прокрутка) производится нажатием на кнопки ⇐, ⇒, расположенные по краям группы кнопок **F1-F4** (см. Рис.5.1.).

В режиме «УЗ контроль» установлены следующие пункты главного меню: «Экран», «Селектор», «Функции», «Стоп». При нажатии на кнопки F1-F4 производится выбор любого пункта главного меню (см. пример на Рис.5.3.). Выбор пункта меню индицируется шумовой канвой по периметру окна данного пункта. Одновременно появляется окно управляющего меню. Выбор элементов управляющего меню, редактирование параметров дефектоскопа осуществляется кнопками $\uparrow, \leftarrow, \rightarrow, \downarrow, \downarrow$, расположенными справа в верхней части передней панели. Повторное нажатие на кнопку F1-F4 отменяет выбор, окно управляющего меню пропадает.

Подробное описание пунктов главного меню и связанных с ними окон управляющих меню приводится в ниже следующих параграфах.

Каждый пункт главного меню снабжен контекстной помощью. При нажатии на кнопку «Помощь» на экране дефектоскопа появляется окно с текстом, поясняющим работу данного пункта меню. Окно помощи отображается только в том случае, если выбран пункт главного меню. Контекстная помощь может содержать несколько страничек текста. Они «перелистываются» нажатием на кнопки \leftarrow , \rightarrow . Повторное нажатие кнопки «Помощь» убирает окно помощи.

Окно помощи захватывает реакции кнопок ←, → поэтому при просмотре помощи невозможно редактировать параметры дефектоскопа с помощью этих кнопок.

В каждом из режимов работы действует система долговременной памяти, которая вызывается нажатием на кнопку «Данные». В режиме «Настройка» производится запоминание или загрузка параметров дефектоскопа (настроек), а в режиме «УЗ контроль» запоминаются или просматриваются результаты контроля.

На переднюю панель прибора выведен индикатор заряда аккумулятора «Заряд». Индикатор горит в процессе заряда аккумулятора от источника питания ИП-9414. По окончании заряда индикатор гаснет. Работа индикатора «Заряд» не зависит от состояния прибора – включен или выключен.

На передней панели прибора установлен контакт однопроводного интерфейса «ПЭП». Он предназначен для считывания данных из ультразвуковых преобразователей. Считывание данных происходит автоматически, если соединить контакты интерфейса. На их основе производится автоматическая настройка генератора зондирующих импульсов и приемника. Дополнительно информация о преобразователе записывается в данные настройки и в данные результатов контроля.

Все электрические соединения прибора осуществляются с помощью разъемов, расположенных на задней панели. Прибор имеет следующие разъемы:

- 1. ЗИ. Выход генератора зондирующих импульсов.
- 2. ВХОД. Вход приемника ультразвуковых сигналов.
- 3. ПИТАНИЕ. Разъем для подключения источника питания ИП-9414.
- 4. НАУШНИКИ. Подключение головных телефонов.

5. USB. Подключение канала универсальной последовательной шины связи с персональным компьютером.

Кроме того, на задней панели прибора установлен отсек аккумулятора.

6 Меню режима работы «Настройка»

Меню «Настройка» устанавливается при нажатии на кнопку режима «Настройка» на передней панели прибора. В режиме «Настройка» параметры дефектоскопа сгруппированы по системам и представлены в виде элементов главного меню: «Электроакустический тракт», «Экран», «Селектор», «Глубиномер», «АСД #1», «АСД #2», «ВРЧ», «Часы Будильник».

Указанные элементы расположены слева направо в нижней части экрана. В процессе настройки прибора желательно придерживаться последовательности настройки систем слева направо так, как они расположены в меню.

7 Меню режима работы «УЗ контроль»

В режиме ультразвукового контроля операции сгруппированы в главном меню следующим образом: «Экран», «Селектор», «Функции», «Стоп».

8 Режим просмотра данных ультразвукового контроля

Переход к просмотру результатов ультразвукового контроля осуществляется в режиме «УЗ контроль» из окна сохранения данных «Запись данных в ФАЙЛ ХХХ» после выбора элемента меню «Переход в просмотр». Вид экрана в этом режиме показан на Рис. 8.1.

Рис. 8.1. Вид экрана прибора в режиме просмотра данных ультразвукового контроля. А). Изображение эхосигналов из файла 003. Б). В файле 166 нет данных.

В режиме просмотра прибор выводит на экран данные из файлов. Причем из каждого файла загружается настройка прибора. Отображение сигналов и измерение их параметров производится согласно этой настройке, т.е. воспроизводятся все условия, которые были в момент записи данных. При переходе в режим просмотра выводится информация из последнего файла, записанного в энергонезависимую память.

Номер файла, а также дата и время его записи всегда отображается в окне расположенном в левом верхнем углу экрана (см. Рис. 8.1.). Если в файле нет данных, поле даты заполняется символом «#».

В режиме просмотра есть главное меню, организованное в виде окон в нижней части экрана. Вызов элементов главного меню производится при нажатии кнопок F1 – F4, расположенных под окнами. Главное меню содержит следующие элементы:

- 1. «файл XXX» просмотр информации в файле.
- 2. «Карта памяти» обзор заполнения памяти, стирание данных.
- 3. «Селектор» измерение параметров ультразвуковых сигналов.
- 4. «Функции» просмотр сигналов, полученных в аналогичном меню «Функции» в режиме «УЗ контроль».

Если файл не содержит информации, элементы главного меню «Селектор» и «Функции» блокируются. Их изображение не выводится на экран.

9 Инструкция по эксплуатации

9.1 Включение и выключение прибора.

Включите прибор, кратковременно нажав на кнопку «Вкл-Выкл». После отпускания кнопки монитор питания прибора производит его включение.

При включении дефектоскопа загорается индикатор "Питание" и производиться загрузка программы внутреннего процессора. Время загрузки примерно 2 секунды. После этого на экран выводится заставка, в которой указан тип, номер прибора и версия программного обеспечения.

Рис.9.1.1. Вид экрана прибора после его включения.

Рис.9.1.2. Вид экрана прибора после его выключения.

Здесь, нажав на кнопку «Помощь», можно получить информацию об изготовителе прибора: его адрес, номера телефонов и т.д. Повторное нажатие на кнопку «Помощь» закрывает окно с информацией об изготовителе.

Переход к работе с прибором осуществляется с помощью кнопок «Настройка» и «УЗ контроль».

Выключение прибора производится нажатием на кнопку «Вкл/Выкл». Если прибор был включен, он выключается. И наоборот, если прибор был выключен – он включается.

При выключении прибора запоминается его действующая настройка, а также дата и время выключения (Рис.9.1.2.). При новом включении эта настройка загружается в прибор и в заставке выводится сообщение «установлена настройка от (дата, время)» - Рис.9.1.1. Если нужно

сбросить последнюю настройку прибора, нажмите кнопку «Данные». Тогда все параметры прибора будут установлены по умолчанию (стандартная настройка).

9.2 Сообщение о разряде аккумулятора

В процессе работы прибор УД9812 постоянно контролирует напряжение и ток аккумулятора. Эти данные отображаются в окне состояния аккумулятора расположенном справа сверху экрана.

Если напряжение упало ниже 4,20В, прибор выводит на экран окно сообщения с текстом:

"Аккумулятор находится на границе разряда. Подключите к прибору источник питания ИП-9414". Сообщение остается на экране в течении 20 секунд. Если подключить к прибору источник питания ИП-9414, окно сообщения немедленно пропадает.

Если напряжение аккумулятора стало ниже 4,10В, на экран выводится окно с надписью: "Аккумулятор разряжен. Прибор будет выключен через 10 с". Начинается отсчет времени до выключения. По истечении 10 секунд прибор самостоятельно выключается.

Рис. 9.2.1. Сообщение о разряде аккумулятора на экране прибора.

Рис. 9.3.1. Окно контекстной помощи на экране прибора.

9.3 Система оперативной помощи работы с прибором

В режимах «Настройка» и «УЗ контроль» действует система контекстной помощи, которая вызывается нажатием на кнопку «Помощь». На экране прибора появляется окно с текстом, поясняющим работу данного элемента меню – Рис. 9.3.1. Окна помощи захватывают реакции кнопок \leftarrow , \rightarrow для перехода от одного к другому, поэтому при их просмотре невозможно редактировать параметры дефектоскопа. Выход из режима просмотра помощи осуществляется также нажатием на кнопку «Помощь».

Окна помощи содержат краткую информацию об устройстве и работе прибора. Различные методические приемы настройки прибора, проведения неразрушающего контроля и выполнение измерений следует изучать по данному руководству по эксплуатации.

9.4 Настройка прибора

Нажмите кнопку «Настройка» на передней панели прибора. Дефектоскоп перейдет в этот режим. Здесь необходимо провести установку параметров прибора для выполнения неразрушающего контроля изделий.

9.4.1 Электроакустический тракт

Состояние электроакустического тракта ультразвукового дефектоскопа характеризуется рядом параметров:

- длительность зондирующего импульса,
- диапазон входных сигналов ($\pm 1B$ или $\pm 10B$),
- фильтр высокой частоты,
- вывод высокочастотного или детектированного сигнала,
- фильтр низкой частоты,
- уровень компенсированной осечки сигналов.

УЗ конт 19.01.06г	роль 15 40 ▶ 25,0+00,0 дБ	🖼 5,208 🔅 выкл	3+0,16A +39°C
	Обнаружен преобразователь П121- 5,0- 70°-Ø8 № 033-0,1.05 Электронный номер		дЕ +2 +1 0 -1 -2
	79-000001В7Е6СЕ-14-2 Настроить ГЗИ и приемник Принять данные ПЗП Выход		- 6
Ав ЭКР/	10 20 30 40 10 20 30 40 10 Селектор Функции	о Сто	-18 -20 О мкс ОП

Рис. 9.4.1.1. Результат считывания данных из преобразователя.

Совместная работа дефектоскопа с ультразвуковым преобразователем требует установки всех выше перечисленных параметров. Комплекс характеристик электроакустического тракта должен быть оптимально согласован с преобразователем для получения наилучшего соотношения сигнал-шум, высокой чувствительности и высокой лучевой разрешающей способности. Кроме того, необходимо зафиксировать информацию о преобразователе, его тип, паспортный номер и электронный номер. В дальнейшем данные о преобразователе будут запоминаться в файлах настройки и в файлах результатов контроля.

В приборе реализовано два способа установки параметров электроакустического тракта: автоматический и ручной.

Рассмотрим автоматический способ настройки. Здесь используется информация о преобразователе, записанная в его встроенной памяти. Подключите преобразователь к дефектоскопу с помощью штатного кабеля. Соедините контакт однопроводного интерфейса преобразователя с контактом «ПЭП» на передней панели прибора. Дефектоскоп автоматически считывает память преобразователя и выводит на экран окно сообщения Рис. 9.4.1.1.

В данном окне имеется меню из трех элементов. Переход от одного элемента меню к другому

осуществляется кнопками \uparrow , \downarrow , выбор меню производится кнопкой \downarrow . Прибор выполняет

следующие действия при выборе элементов меню.

«Настроить ГЗИ и приемник» - Параметры генератора зондирующих импульсов и приемника устанавливаются оптимальными для работы с данным преобразователем. Информация о преобразователе записывается в оперативную память прибора. Затем выдается окно сообщения Рис. 9.4.1.2. А.

«Принять данные ПЭП» - Информация о преобразователе записывается в оперативную память прибора. Настройка электроакустического тракта не производится. Прибор выводит окно сообщения Рис. 9.4.1.2. Б.

«Выход» - Окно сообщения «Обнаружен преобразователь» закрывается.

Рис.9.4.1.2. Окна сообщений при выборе элементов меню. А) «Настроить ГЗИ и приемник». Б) «Принять данные ПЭП».

Настройка электроакустического тракта производится в меню «Настроить ГЗИ и приемник». Оптимальным образом устанавливаются следующие параметры электроакустического тракта:

- длительность зондирующего импульса,
- полоса пропускания фильтра высокой частоты,
- частота среза фильтра низкой частоты.

Диапазон входных сигналов, вид сигнала – высокочастотный или детектированный и уровень компенсированной осечки остаются без изменений. Их можно отрегулировать, выбрав главное меню «ЭЛ-АК тракт». В большинстве случаев в методиках ультразвукового контроля используются детектированные сигналы, диапазон входных сигналов приемника ±1В. Поэтому,

как правило, не возникает необходимость в дополнительной регулировке электроакустического тракта после автоматической настройки.

В частности, диапазон входных сигналов приемника ±10В необходим при работе с прямыми совмещенными преобразователями с частотой от 2,5 МГц и ниже. Указанные преобразователи имеют очень высокую чувствительность. Амплитуда эхосигнала от дефекта в стали на глубине 5 – 30мм, получаемая с такого ПЭП, может быть 1 ÷ 4В.

Рассмотрим ручной способ настройки электроакустического тракта прибора. Выберите элемент главного меню «ЭЛ.-АК. Тракт». В верхнем правом углу экрана появится меню «Электроакустический тракт» Рис. 9.4.1.3.

Рис. 9.4.1.3. Меню «Электро-акустический тракт».

H	a	строй 1.06-	Ka 15 44	25	, <mark>О</mark> Злектр	о- акусті	ический	тракт
				,	— Инфорі Частот	мация с а ПЭП	05,00	МΓц
			Инф	ормация	₀ пэп		ДЕТ. - 39,1	дБ
			∏12 NF C	21- 5,0 033-0,1	- 70°-⊈ .05	78	Бней	
	 		Элеі 79-	ктронный 000001В	4-2			
			Выя	94			J	-12
-A-	::	M	A					18 -20
Aв Ma	C		0	20	30	40	50	мко
0		тракт	K.	ЭКРАН		сторал онту За	луоин Мер	• §4

Рис.9.4.1.4. Выбор меню «Информация о ПЭП».

Если выбрать верхний элемент меню «Информация о ПЭП», отображается дочернее окно с данными ультразвукового преобразователя Рис. 9.4.1.4. Управление от кнопок $\uparrow, \leftarrow, \rightarrow, \downarrow, \downarrow$ передается данному окну. Здесь выводится тип, паспортный номер и электронный номер преобразователя. Информация о преобразователе, считанная по однопроводному интерфейсу и записанная в оперативной памяти прибора, отображается в этом окне.

Окно «Информация о ПЭП» позволяет редактировать строки тип преобразователя и номер – Рис. 9.4.1.5. Кнопками \uparrow , \downarrow установите маркер на редактируемую строку и нажмите
кнопку ...Поле строки становится белым. Появляется курсор, отмечающий позицию вставки символа. Одновременно на экране отображается окно ввода символов Рис. 9.4.1.5.

Редактирование строки проводится следующим образом. Кнопками $\uparrow, \leftarrow, \rightarrow, \downarrow$ укажите нужный символ, затем кнопкой \downarrow вставьте символ в позицию курсора. Выбранный символ вставляется в строку и курсор перемещается на следующий символ. Используйте кнопки **F1**, **F2** для перемещения курсора вправо и влево по строке. Выход из режима редактирования производится при нажатии кнопки **F4**.

Закрывание окна «Информация о ПЭП» происходит при выборе элемента меню «Выход».

Рис. 9.4.1.5. Ручной ввод информации о преобразователе. А) Редактирование типа преобразователя. Б) Редактирование номера преобразователя.

Рис. 9.4.1.6. Выбор вида сигнала. А) Детектированный. Б) Высокочастотный.

Наиболее важный параметр, определяющий настройку генератора зондирующих импульсов и приемника, это частота ультразвукового преобразователя. Частота ПЭП устанавливается в одноименном элементе меню «Электроакустический тракт». С помощью кнопок ↑, ↓ установите маркер на элемент меню «Частота ПЭП». Кнопками ←, → установите значение частоты равное частоте преобразователя, подключенного к прибору. В данном элементе меню при выборе частоты устанавливаются оптимальными – длительность ЗИ,

фильтр ВЧ и фильтр НЧ – точно так же, как при автоматической настройке. Параметры ГЗИ и приемника можно проконтролировать, выбрав элемент меню «подробней».

Следующий элемент меню «Вид сигнала» позволяет установить режим отображения ультразвуковых импульсов: ДЕТ. – детектированный сигналы, ВЧ – высокочастотные сигналы. Вид экрана прибора при выборе вида сигнала показан на Рис 9.4.1.6. А) и Б).

Обычно используются детектированные сигналы. Этот режим установлен в приборе по умолчанию. Высокочастотные сигналы используются для точных измерений задержки или координаты **H**. Измерения проводят методом перехода сигнала через ноль. Как правило, такая необходимость возникает в задачах измерения толщины стенок изделий, а также при аттестации мер ультразвуковой эквивалентной толщины или мер скорости ультразвуковых колебаний.

Элемент меню «Отсечка» предназначен для установки уровня компенсированной отсечки сигналов Рис.9.4.1.7. Отсечка работает только для детектированных сигналов. Если установлено отображение высокочастотных сигналов, в поле редактирования выводится «нет».

Рис.9.4.1.7. Установка уровня отсечки сигналов. А) Уровень отсечки –39,1 дБ. Б) Уровень отсечки –6,1 дБ.

Рис. 9.4.1.8. Дополнительное меню электро-акустического тракта.

Уровень отсечки указан в децибелах по разметке экрана. Его можно изменить, нажимая на кнопки \leftarrow , \rightarrow . Если удерживать кнопку \leftarrow или \rightarrow в нажатом состоянии, работает автоповтор

нажатия кнопки. Уровень отсечки перемещается вверх или вниз. Рекомендуется выбирать уровень отсечки в диапазоне –12 ÷ -20 дБ.

Последний элемент меню «подробней» открывает дочернее окно с параметрами генератора зондирующих импульсов и приемника Рис. 9.4.1.8. Приняты следующие сокращения в элементах меню: «Макс. Эхо» - диапазон входных сигналов, «Длит-сть ЗИ» - длительность зондирующего импульса, «Фильтр ВЧ» - полоса пропускания фильтра высокой частоты, «Фильтр НЧ» - частота среза фильтра низкой частоты. Здесь можно редактировать каждый из элементов меню. Окно закрывается при выборе элемента меню «Закрыть».

Напомним, что длительность ЗИ и частотные параметры фильтров были установлены оптимальными, когда проводилась автоматическая настройка электроакустического тракта или когда устанавливалась частота преобразователя. Ручная регулировка этих параметров определяет некоторую частную настройку прибора. Данный факт отмечается символом «~» перед значением частоты. Строка «Частота ПЭП» выглядит так

Частота ПЭП ~ 05,00 МГц

Установка длительности ЗИ и параметров фильтров вручную используется, например, при работе с широкополосными преобразователями.

Меню настройки электроакустического тракта разделено на три части. Главное окно «Электроакустический тракт» Рис. 9.4.1.3 содержит основные параметры, которые в большинстве случаев нужно редактировать. Это частота преобразователя, вид сигнала и уровень отсечки. Дочерние окна «Информация о ПЭП» и «подробней» обеспечивают доступ к сопутствующей информации. В основном, эти окна предназначены для просмотра данных. Редактирование параметров в них проводится довольно редко.

9.4.2 Установка диапазонов отображения сигналов. Меню «Экран»

В методиках ультразвукового контроля анализируются сигналы в некотором интервале задержек и в определенном диапазоне амплитуд. Прибор УД9812 имеет широкие диапазоны настройки, поэтому всегда необходимо устанавливать диапазоны отображения сигналов. Для этой цели служит меню «Экран». Данное меню позволяет установить 4 параметра:

- разметка развертки (мкс, ммХ, ммҮ, ммН),
- усиление (дБ),
- ширина экрана (мкс),
- сдвиг экрана (мкс).

Рис. 9.4.2.1. Ультразвуковой контроль стыкового сварного шва. А) Схема прозвучивания сварного шва. Б) Схема прозвучивания зарубок в СОП. Принцип настройки состоит в том, чтобы все необходимые сигналы наблюдались в пределах экрана прибора. Как правило, в методиках контроля нет жестких требований к диапазонам отображения сигналов. Они устанавливаются приблизительно.

Рассмотрим установку диапазонов отображения сигналов на примере типовой методики контроля стыкового сварного шва. Как известно, ввод ультразвуковых колебаний производится с поверхности околошовной зоны. Объем наплавленного металла и зоны термического влияния прозвучиваются прямыми и однажды отраженными лучами преобразователя Рис. 9.4.2.1. А. Для настройки дефектоскопа используется стандартный образец предприятия (СОП), в котором изготовлены угловые отражатели (зарубки), имитирующие максимально допустимый дефект Рис. 9.4.2.1. Б. Настройка дефектоскопа производится по эхосигналам от зарубок.

Перемещая преобразователь по образцу найдите максимум эхосигнала от нижней зарубки (положение ПЭП 1 на Рис. 9.4.2.1. Б). Пользуясь элементами меню «Усиление», «Ширина» и «Сдвиг» установите эхосигнал от нижней зарубки как показано на Рис. 9.4.2.2. А. Теперь найдите максимум эхосигнала от верхней зарубки (положение ПЭП 2 на Рис. 9.4.2.1. Б). Отрегулируйте ширину экрана так, чтобы эхосигнал наблюдался в конце развертки (Рис. 9.4.2.2. Б). Эхосигналы от дефектов в сварном шве будут появляться в диапазоне задержек от эхосигнала нижней зарубки до эхосигнала верхней зарубки. В данном диапазоне впоследствии устанавливается строб АСД#1. Выравнивание амплитуд эхосигналов будет проводиться системой ВРЧ. В процессе контроля измеряют координаты дефекта X и Y, поэтому рекомендуется сразу установить разметку экрана, например ммY.

Рис. 9.4.2.2. Установка диапазонов отображения сигналов при контроле стыкового сварного шва. Эхосигналы в СОП толщиной 18мм. Зарубки 3,5*2,0 мм. Преобразователь П121-2,5-65°-Ø14. РШХ – реверберационно-шумовая характеристика преобразователя.

А) Эхосигнал от нижней зарубки. Б) Эхосигнал от верхней зарубки.

Развертку прибора желательно устанавливать от зондирующего импульса или с небольшим сдвигом так, чтобы наблюдалась реверберационно-шумовая характеристика преобразователя (РШХ). По сигналу РШХ можно легко определить отказы в кабеле, соединяющем преобразователь с прибором.

Другой пример – ультразвуковой контроль листов. Рассмотрим самую простую методику контроля, в которой для настройки дефектоскопа используется СОП с одним плоскодонным отражателем Рис.9.4.2.3. Прозвучивание листа производится прямым совмещенным преобразователем.

40

Рис. 9.4.2.3. Ультразвуковой контроль металлических листов. А) Схема прозвучивания листа. Б) Схема прозвучивания СОП.

Рис. 9.4.2.4. Установка диапазонов отображения сигналов для ультразвукового контроля листов. Настройка по СОП толщиной 70 мм. Диаметр плоскодонного отражателя 3мм. Преобразователь П111-2,5-Ø14.

Ширину развертки и сдвиг устанавливают с таким расчетом, чтобы на экране прибора наблюдался зондирующий импульс и донный эхосигнал (Рис. 9.4.2.4.). Нужно стремиться к тому, чтобы расстояние от ЗИ до донного сигнала было не менее ½ ширины развертки – будущая зона контроля, строб АСД#1. Разметку экрана устанавливают – ммН., т.к. в данной методике измеряется только глубина залегания дефекта.

9.4.3 Установка измеряемых параметров ультразвуковых сигналов. Меню «Селектор»

Селектор дефектоскопа УД9812 может проводить измерение задержки сигнала, координат Х, Ү, Н, и амплитуды (5 режимов измерений). Для определения задержки и координат используется 3 способа измерений: по фронту, по пику и по переходу сигнала через ноль. Кроме того, нужно установить порог захвата селектора и ширину маркера захвата сигнала.

Такое устройство селектора может показаться сложным. Однако, прибор УД9812 является универсальным дефектоскопом, который поддерживает множество вариантов измерений параметров сигнала. Существуют простые правила настройки селектора. Все определяется целями и задачами измерений. Рассмотрим некоторые примеры.

Контроль наклонным преобразователем. Прозвучивание изделий наклонным преобразователем широко используется в технологиях неразрушающего контроля сварных соединений и основного металла. При этом измеряют координаты дефекта X, Y и амплитуду эхосигнала относительно браковочного уровня.

Нажмите кнопку F1 – F4, расположенную под главным меню «Селектор». В верхней части экрана появляется два окна. Слева расположено окно результатов измерений и справа – окно с меню настройки. Вначале необходимо провести установку параметров, которые будет определять селектор.

Выберите элемент меню «Уст. Измерений». На экране прибора появляется дочернее окно, в котором представлено меню выбора параметров и режимов измерений (Рис. 9.4.3.1. А).

Рис. 9.4.3.1. Установка режимов селектора для работы с наклонным преобразователем. Эхосигналы в СОП толщиной 18мм. Зарубки 3,5*2,0 мм. Преобразователь П121-2,5-65°-Ø14. А) Установка режимов измерений селектора.

Б) Настройка положения селектора и маркера звхвата.

Отключите один канал измерения амплитуды. В поле режима установите «Выкл». В другом канале установите режим измерений амплитуды относительно строба АСД#1, надпись в поле режима «дБ от АСД#1». Далее выберите режим измерений задержки эхосигналов «по фронту». Отключите измерение времени «Задержка (Т) Выкл» и измерение координаты Н «Глубина (Н) Выкл». Включите измерение координат X, Y – «Коорд. (X,Y) Вкл».

В итоге, в окне измерений сверху слева будет выводиться амплитуда эхосигнала в децибелах, найденная относительно браковочного уровня АСД#1, и координаты дефекта X и Y (Рис. 9.4.3.1. А). Внимание, пока не проведена настройка глубиномера и АСД#1, результаты измерений не корректны.

Теперь нужно установить положение селектора и ширину маркера захвата. Закройте дочернее окно и выберите элемент меню «СЕЛЕКТОР» Рис. 9.4.3.1. Б. Обратите внимание на подсказку, следующую после надписи «СЕЛЕКТОР». Нажимая кнопку , установите режим редактирования

Здесь кнопками ↑, ↓ регулируется положение селектора по вертикали, а кнопками ←, → устанавливается ширина маркера захвата.

Рекомендуется устанавливать вертикальное положение селектора на уровне –12 ÷ -20 дБ по разметке экрана. Ширину маркера захвата обычно устанавливают в 1,5 – 2 раза больше длительности эхосигнала.

Контроль прямым совмещенным преобразователем. Прозвучивание прямым преобразователем используется для контроля листов, поковок, отливок и других крупногабаритных изделий. Применяется эхометод. Здесь необходимо измерять амплитуду эхосигнала относительно строба ACД#1 и глубину залегания дефекта, т.е. координату H.

Выберите меню «Селектор» и далее элемент меню «Уст. Измерений» - Рис. 9.4.3.2. А. Установите один канал измерения амплитуды в режим «дБ от АСД#1», другой канал отключите. Установите режим измерения задержки «по фронту» и включите измерение координаты H (Puc. 9.4.3.2. A). Измерение времени T и координат X, Y отключите.

Рис. 9.4.3.2. Установка режимов селектора для работы с прямым совмещенным преобразователем. Эхосигналы в СОП толщиной 70 мм. Плоскодонный отражатель Ø3мм.

Преобразователь П111-2,5-Ø14.

А) Установка режимов измерений селектора.

Б) Настройка положения селектора и маркера захвата.

В окне измерений селектора будет выводиться амплитуда эхосигнала относительно строба АСД#1 и глубина залегания дефекта Н.

Установите преобразователь на СОП и найдите эхосигнал от контрольного отражателя Рис. 9.4.3.2. Б. Отрегулируйте положение селектора по вертикали и ширину маркера захвата. Еще раз подчеркнем, что правильный результат измерений будет выдаваться только после настройки глубиномера и АСД#1.

Измерение толщины стенок изделий. В данном случае применяются прямые раздельно-совмещенные преобразователи, так же как и в ультразвуковых толщиномерах. Главной задачей является точное измерение толщины. В практических применениях часто необходимо определить остаточную толщину стенки в изделиях, находящихся длительное время в эксплуатации и подверженных коррозии.

Будем проводить измерение задержки высокочастотного эхосигнала методом перехода через ноль. Настроим селектор на измерение координаты Н.

В меню «Электроакустический тракт» - «Вид сигнала» установите «ВЧ». В меню «Экран» проведите установку усиления, сдвига и ширины развертки для наблюдения донных эхосигналов в нужном диапазоне толщин.

Проведите установку режимов селектора – Рис. 9.4.3.3. А. Отключите один канал измерения амплитуды. Если не ставится задача выявления дефектов, измерение амплитуды

относительно строба АСД#1 можно отключить. Контроль амплитуды сигналов проводится визуально по экрану прибора.

Установите измерение задержки эхосигнала по переходу через ноль. В поле «Режим» установите «через 0». Включите измерение координаты Н. В поле «Глубина (Н)» укажите «Вкл». Отключите измерение времени Т и координат Х, Ү.

Проведите настройку положения селектора и маркера захвата как показано на Рис. 9.4.3.3. Б. Селектор должен надежно захватывать первый период колебаний эхосигнала. Более подробно процесс захвата эхосигнала показан на Рис. 9.4.3.3. В. Отметим, что селектор будет выполнять точные измерения после настройки глубиномера по мерам (образцам) толщины.

В дальнейшем, при измерении остаточной толщины стенки изделий необходимо строго придерживаться условия захвата первого периода колебаний эхосигнала. Если наблюдается низкая амплитуда донного эхосигнала из-за рассеяния волн на корродированной донной поверхности, возможен пропуск одного или даже двух периодов эхосигнала. Поэтому на практике контролируют захват эхосигнала селектором и, если нужно, увеличивают усиление приемника дефектоскопа.

Рис. 9.4.3.3. Установка режимов селектора для измерения толщины. Донный эхосигнал в мере толщины 20 мм. Преобразователь П112-2,5-Ø14. А) Установка режимов измерений селектора.

Б) Настройка положения селектора и маркера захвата.

В) Подробное изображение захвата донного эхосигнала.

9.4.4 Настройка глубиномера общие замечания

Глубиномер ультразвукового дефектоскопа реализует косвенный метод измерений. Вначале определяется задержка эхосигнала (микросекунды), затем производится расчет координат (миллиметры) учитывая время пробега волн в преобразователе и масштаб перехода от времени к миллиметрам шкалы для данной координаты.

В дефектоскопе УД9812 имеется два стиля настройки глубиномера «Авторасчет» и «Табличный». Разделение настройки по стилям связано с различными методиками установки параметров глубиномера. Стиль «Авторасчет» - наиболее универсальный способ настройки. Он обеспечивает установку параметров глубиномера без повторяющихся операций – безитерационная настройка. Стиль «Табличный» основан на прямой установке параметров глубиномера (время задержки волн в ПЭП, скорость звука, угол ввода).

Рис. 9.4.4.1. Выбор стиля настройки глубиномера.

В нижней части экрана выберите главное меню «Глубиномер». Появится окно, в котором сначала нужно указать стиль настройки Рис. 9.4.4.1. Кнопками ←, → производится выбор стиля, а кнопкой ↓ осуществляется переход к настройке. Во всех режимах работы дефектоскопа есть индикация выбранного стиля глубиномера. Измерение координат дефектов X, Y, H с помощью селектора всегда производится в соответствии с установленным стилем глубиномера.

9.4.5 Настройка глубиномера в стиле «Авторасчет»

Общий принцип настройки состоит в том, что измеряются задержки двух эхосигналов от отражателей с известными координатами. Затем устанавливаются координаты отражателей. Прибор, в процессе установки координат, автоматически определяет параметры глубиномера.

Процедура настройки глубиномера одинакова для всех координат H, X, Y. В качестве примера рассмотрим настройку глубиномера для наклонного преобразователя по образцу с угловыми отражателями. Это типовая настройка в методиках контроля сварных соединений. Настройка глубиномера для прямых преобразователей или раздельно-совмещенных ПЭП выполняется по аналогии с данным примером.

Пусть используется преобразователь П121-2,5-65⁰-Ø14. Необходимо настроить глубиномер (измерение координат X, Y) по образцу с угловыми отражателями толщиной 18 мм Рис. 9.4.5.1. Здесь, при прозвучивании нижней зарубки (положение ПЭП 1) прибор должен выдавать координаты эхосигнала X1=41 мм, Y1=18мм, а при прозвучивании верхней зарубки однажды отраженными лучами (положение ПЭП 2) координаты эхосигнала X2=82 мм, Y2=36

мм. Заметим, что отсчет координат дефекта производится от точки ввода преобразователя (метка на корпусе ПЭП).

Согласно методике, проведем измерение задержек эхосигналов от зарубок в СОП Рис.9.4.5.2. Установите маркер на строку «Эхо 1» и нажмите кнопку ... На экране прибора появляется селектор, с помощью которого будет проводиться измерение задержки. В левом верхнем углу экрана отображается окно с результатом измерений. Положение селектора по вертикали, ширина маркера захвата и режим измерений соответствуют настройке, сделанной в меню «Селектор».

Рис. 9.4.5.1. Прозвучивание СОП с угловыми отражателями (зарубками). Толщина образца 18мм. Размеры отражателей 3,5*2,0 мм. Преобразователь П121-2,5-65°-Ø14.

Рис. 9.4.5.2. Измерение задержки эхосигналов в СОП. А) Эхосигнал от нижней зарубки. Б) Эхосигнал от верхней зарубки.

Обратите внимание на подсказку в строке «Эхо 1». В этом состоянии меню кнопки \leftarrow, \rightarrow перемещают символ селектора влево или вправо по экрану. Посредством кнопок \uparrow, \downarrow регулируется усиление приемника.

Перемещая преобразователь по образцу, найдите максимум эхосигнала от нижней зарубки. Положение ПЭП 1 на Рис.9.4.5.1. С помощью линейки определите расстояние X1. Захватите селектором эхосигнал как показано на Рис. 9.4.5.2.А и нажмите кнопку . Измерение задержки первого эхосигнала закончено. На экране прибора на месте расположения эхосигнала появляется флажок с надписью «Эхо 1». Символ селектора пропадает. В строке меню «Эхо 1» вместо подсказки выводится время задержки эхосигнала.

Аналогично выполняется измерение задержки эхосигнала от верхней зарубки Рис. 9.4.5.2.Б. Установите маркер на элемент меню «Эхо 2» и нажмите кнопку ↓. Точно также нужно найти максимум эхосигнала от верхней зарубки, с помощью линейки провести измерение расстояния X2, захватить эхосигнал селектором и нажать кнопку ↓ (см. Рис. 9.4.5.1. и Рис. 9.4.5.2.Б). После фиксации замера на экране появляется флажок с надписью «Эхо 2». Время задержки выводится в строку «Эхо 2».

Если по каким-либо причинам измерение проведено не точно, его можно повторить. Установите маркер на нужный элемент меню «Эхо 1» или «Эхо 2», нажмите кнопку , и снова проведите измерение задержки.

В данном примере используется режим измерения задержки эхосигнала по фронту. Эхосигнал имеет некоторое время нарастания – длительность переднего фронта. Результат измерения задержки зависит от амплитуды эхосигнала, т.к. замер производится в различных точках переднего фронта. Поэтому для повышения точности амплитуду эхосигнала устанавливают на уровень 0 дБ по разметке экрана (см. Рис. 9.4.5.2. А и Б). Если, например, используется режим измерения задержки по пику сигнала, то установка амплитуды эхосигнала не проводится.

Рис. 9.4.5.3. Установка координат отражателей. Настройка глубиномера в стиле «Авторасчет».

Второй этап настройки – установка координат. Установите маркер на элемент меню «Настройка H, X, Y» и кнопкой ыберите его. Появляется дочернее окно с координатами отражателей Рис. 9.4.5.3. Здесь производится настройка шкал глубиномера H, X, Y.

Вначале нужно установить расстояние между отражателями ΔX . В нашем примере $\Delta X = X2 - X1 = 41$ мм. В поле ΔX установим 41,0 мм. Далее проводится установка координаты X1 для ближнего отражателя (нижняя зарубка). Очевидно, устанавливается X1=41,0 мм. Настройка координаты X выполнена.

Аналогично производится настройка координаты Y. Сначала устанавливают расстояние между отражателями $\Delta Y = 18,0$ мм, потом координату ближнего отражателя Y1 = 18,0 мм. Настройка закончена.

После установки координат рекомендуется проверить качество настройки. Для этого выберите меню «Селектор», найдите максимум эхосигнала от какого-либо известного отражателя и проверьте правильность измерения координат.

Внимание, если после настройки глубиномера у селектора изменить режим измерений задержки, то результаты измерений времени и координат дефекта будут содержать ошибки связанные с тем, что селектор будет определять задержку в другой временной точке эхосигнала.

9.4.6 Настройка глубиномера в стиле «Табличный»

В меню «Глубиномер» после выбора стиля «Табличный» на экран прибора выводится окно с заголовком «Табл. Настройки», в котором предлагается установить параметры глубиномера, Рис.9.4.6.1.

При использовании прямого преобразователя измеряют глубину залегания дефекта, координату Н. Для настройки шкалы ммН необходимо установить время задержки волн в преобразователе Th и скорость продольных волн в изделии CL.

При использовании наклонного преобразователя определяют координаты X и Y дефекта. Для настройки шкал ммX, ммY указывают время задержки волн в преобразователе Txy, скорость поперечных волн в изделии CT и угол ввода α .

Рис. 9.4.6.1. Меню установки параметров глубиномера в стиле «Табличный».

Однако, для правильной настройки глубиномера необходимо знать численные значения выше указанных параметров. Как правило, в настройке используют справочные данные о скоростях ультразвуковых волн в материале. Время задержки волн в преобразователе Th, Txy, а также угол ввода α , являются параметрами преобразователя. Их необходимо измерить. В ниже следующих параграфах приводятся методики измерений Th, Txy и α .

9.4.7 Определение времени задержки волн в прямом ПЭП

Время задержки какого-либо эхосигнала относительно зондирующего импульса всегда складывается из времени задержки волн в ПЭП (Th) и времени пробега волн в изделии. В связи с этим невозможно непосредственно определить величину Th.

Для измерения Th используют образцы, у которых известно время пробега волн, обозначим его Tco. Тогда измеряют время задержки эхосигнала в образце Тэхо, затем время Th находят как разность

 $Th = T \Im xo - Tco.$

Используем меру CO-2 для измерения времени задержки волн в прямом преобразователе. В мере CO-2 аттестуется время пробега продольных волн от верхней грани образца до нижней и обратно – T_{CO-2}. Схема прозвучивания меры прямым преобразователем показана на Рис.9.4.7.1.

Очевидно, на экране дефектоскопа будет наблюдаться серия донных эхосигналов, которые формируются путем переотражения ультразвукового импульса между нижней и верхней гранями СО-2.

Определим задержку первого донного эхосигнала Т1. Установите ПЭП на меру СО-2. Выберите в главном меню элемент «Селектор». В меню «Уст. Измерений» укажите нужный режим измерений («по фронту», «по пику» или «через 0»), включите измерение времени – Рис.9.4.7.2. В данном случае используется режим измерения времени – «по фронту». Здесь, для повышения точности измерений задержки, нужно устанавливать амплитуду эхосигнала на уровень 0 дБ по разметке экрана.

Рис. 9.4.7.1. Схема прозвучивания меры СО-2 прямым преобразователем.

Захватите на измерение первый донный эхосигнал Рис.9.4.7.2. и зафиксируйте результат измерений Т1. Если в мере СО-2 аттестовано время пробега волн T_{CO-2}= 20,075 мкс, то время задержки волн в преобразователе вычисляется следующим образом

$$Th = T1 - T_{CO-2}$$

$$Th = 21,475 - 20,075 = 1,400$$
 мкс.

Рис. 9.4.7.2. Измерение времени задержки донного эхосигнала в СО-2. Преобразователь П111-2,5-Ø14.

Отметим, что время Th зависит еще от способа измерения задержки, поскольку в режимах «по фронту», «по пику» и по переходу сигнала «через 0» измерения производятся в различных временных точках эхосигнала. Следовательно, при настройке глубиномера (стиль «Табличный») нужно указывать величину Th, измеренную в том же режиме, что и используемый при контроле.

9.4.8 Определение точки ввода и времени задержки волн в наклонном ПЭП

Точка ввода и время задержки волн в наклонном преобразователе Тху определяют с помощью меры СО-3. Схема прозвучивания СО-3 представлена на Рис. 9.4.8.1.

Мера CO-3 аттестуется по времени пробега поперечных волн, T_{CO-3} . Это время пробега поперечных волн от центра меры до ее боковой поверхности и обратно. Типовое значение времени составляет $T_{CO-3} = 34,1$ мкс.

Вначале определим положение точки ввода. Для этого установите преобразователь на CO-3 и найдите положение ПЭП, в котором наблюдается максимум эхосигнала от боковой поверхности меры, Рис. 9.4.8.1. Нанесите метки на корпусе ПЭП (точка ввода) напротив риски центра CO-3. Точка ввода отмечается с двух сторон корпуса преобразователя.

Рис. 9.4.8.1. Прозвучивание меры СО-3 наклонным преобразователем.

Определим время задержки волн в преобразователе Тху. Для этого нужно измерить время задержки эхосигнала от боковой поверхности СО-3. Измерение производится в положении ПЭП соответствующем максимуму эхосигнала. Величина Тху определяется по простой формуле

$$Txy = T1 - T_{CO-3}$$

В примере, представленном на Рис.9.4.8.2., T1 = 44,950мкс, тогда время побега волн в преобразователе Txy = 44,950 – 34,100 = 10,850 мкс.

9.4.9 Определение угла ввода и ширины диаграммы направленности наклонного преобразователя

Угловые характеристики УЗ поля наклонного преобразователя определяют с помощью меры СО-2. Для этой цели на боковой грани меры нанесена шкала углов, установленная относительно отверстия Ø6 мм.

Угол ввода определяют следующим образом. Находят положение ПЭП, в котором наблюдается максимум эхосигнала от отверстия Ø6мм, затем производят отсчет угла ввода по шкале напротив точки ввода ПЭП. При этом дефектоскоп используется как индикатор максимума амплитуды Рис. 9.4.9.1.

Рис. 9.4.9.1. Определение угла ввода ПЭП на мере СО-2. Преобразователь П121-2,5-40°-Ø14. А) Схема прозвучивания меры СО-2. Б) Вид эхосигналов на экране дефектоскопа.

Рис. 9.4.9.2. Определение ширины диаграммы направленности ПЭП на мере СО-2. Преобразователь П121-2,5-40°-Ø14.

А) Схема прозвучивания меры СО-2. Б) Вид эхосигналов на экране дефектоскопа.

Будьте внимательны, иногда можно спутать эхосигнал от левого нижнего угла CO-2 с эхосигналом от отверстия (Рис. 9.4.9.1.А). Здесь помогает простой прием. Перемещайте ПЭП слева направо по мере CO-2. Сначала появляется эхосигнал от угла, и только после него возникает эхосигнал от отверстия Ø6 мм.

Угол ввода является одним из параметров настройки глубиномера в стиле «Табличный». Обратите внимание на паразитные сигналы, следующие за эхосигналом от отверстия Рис. 9.4.9.1.Б. Эти сигналы образуются за счет переизлучения волн отверстием.

Процедура определения ширины диаграммы направленности содержит 4 этапа. Прозвучивание меры СО-2 и вид эхосигналов демонстрирует Рис. 9.4.9.2.

- Найдите положение ПЭП, в котором наблюдается максимум эхосигнала от отверстия Ø6мм в СО-2. В этом положении определяется угол ввода, обозначим его - #1. Регулируя усиление прибора, установите амплитуду эхосигнала #1 на уровень 0дБ по разметке экрана. На Рис. 9.4.9.2.Б максимальный эхосигнал зафиксирован с помощью функции прибора «Запомнить».
- 2. Переместите ПЭП назад по шкале углов, пока амплитуда эхосигнала не достигнет уровня -6дБ. Зафиксируйте ПЭП (положение **#2**). Запишите угол прозвучивания α2.
- 3. Проведите аналогичные операции, переместив ПЭП вперед (положение **#3**). Запишите угол прозвучивания α3. Амплитуда эхосигнала тоже должна находится на уровне 6дБ.

Найдите ширину диаграммы направленности как разность углов $\vartheta = \alpha 2 - \alpha 3$.

9.4.10 Автоматический сигнализатор дефектов АСД#1

Как ранее было отмечено, система АСД#1 является основной. В большинстве случаев, когда необходим автоматический сигнализатор дефектов, используйте АСД#1.

В данном параграфе рассмотрим некоторые типичные примеры использования системы АСД#1. Выберите элемент меню «АСД#1» и нажмите кнопку ... На экране дефектоскопа появляется окно с заголовком «Доп. Параметры» (Рис. 9.4.10.1.Б). Здесь устанавливается положение уровня фиксации и поискового уровня относительно браковочного, а также производится включение световой и (или) звуковой сигнализации.

В большинстве случаев ультразвуковой контроль изделий проводится эхометодом. Устанавливают режим работы АСД#1 – «Эхо» (Рис. 9.4.10.1.А). Обычно в методиках контроля используют уровень фиксации расположенный на 6дБ меньше браковочного, а поисковый уровень устанавливают на 6дБ меньше уровня фиксации (Рис. 9.4.10.1.Б).

Рассмотрим порядок настройки ACД#1 в типовой методике контроля стыкового сварного шва. Настройка производится по эхосигналам от угловых отражателей (зарубок) в COП (Рис. 9.4.10.2.). Отражатели формируют эхосигналы, указывающие начало и конец строба ACД#1, т.е. зону, в пределах которой ожидаются эхосигналы от дефектов. Кроме того, амплитуда эхосигналов от зарубок определяет амплитудный порог разбраковки несплошностей. Вертикальное положение строба ACД#1 должно соответствовать амплитуде эхосигналов от зарубок.

В процессе настройки АСД#1 выполняют следующие операции:

- 1. Найдите максимум эхосигнала от нижней зарубки в СОП. На Рис. 9.4.10.2., это положение ПЭП 1. Вид эхосигнала показан на Рис. 9.4.10.3.А. В меню «АСД#1» выберите элемент «Брак ур.» (браковочный уровень). Установите вертикальное положение браковочного уровня #1 на вершину эхосигнала от нижней зарубки.
- 2. Выберите элемент меню «Начало» и установите начало строба АСД#1 на передний фронт эхосигнала (Рис.9.4.10.3.А).
- 3. Найдите максимум эхосигнала от верхней зарубки в СОП. Положение ПЭП 2 на Рис. 9.4.10.2. Вид эхосигнала изображен на Рис. 9.4.10.3.Б. Редактируя элемент меню «Ширина» установите конец строба АСД#1 на задний фронт эхосигнала.

Заметим, что амплитуды эхосигналов от нижней и верхней зарубок существенно отличаются. Правильная настройка браковочного уровня сделана только для нижней зарубки (Рис.9.4.10.3.А). Выравнивание амплитуды эхосигнала от верхней зарубки на браковочный уровень АСД#1 впоследствии производится с помощью системы ВРЧ.

Рис. 9.4.10.1. Меню АСД#1. А) Выбор режима работы. Б) Настройка пороговых уровней и сигнализации.

Рис. 9.4.10.2. Схема прозвучивания угловых отражателей (зарубок) в СОП.

Рис. 9.4.10.3. Настройка АСД#1 по эхосигналам от зарубок. СОП толщиной 18мм. Зарубки 3,5*2.0 мм. Преобразователь П121-2,5-65⁰-Ø14.

А) Установка начала строба АСД#1 по эхосигналу от нижней зарубки.

Б) Установка ширины строба АСД#1 по эхосигналу от верхней зарубки.

Рассмотрим другой пример. Настройка АСД#1 в методике контроля листов. Здесь используется СОП с плоскодонным отражателем, расположенным на середине толщины листа (Рис. 9.4.10.4.А). В методике не учитывается неравномерность чувствительности в зависимости от глубины залегания дефекта. Система ВРЧ не используется.

Браковочный уровень АСД#1 устанавливают по амплитуде эхосигнала от плоскодонного отражателя в СОП. Зона контроля, начало и конец строба АСД#1, устанавливается от зондирующего импульса, включая РШХ, до переднего фронта донного эхосигнала (см. Рис. 9.4.10.4.Б).

Рис. 9.4.10.4. Настройка строба АСД#1 в методике контроля листов. СОП толщиной 30мм. Плоскодонное отверстие диаметром 3мм на глубине 15мм. Преобразователь П111-2,5-Ø14. А) Схема прозвучивания СОП.

Б) Вид эхосигналов и положение строба АСД#1 в настроенном состоянии.

9.4.11 Автоматический сигнализатор дефектов АСД#2

Система АСД#2 является дополнительной, часто ее используют совместно с основной системой АСД#1.

Рис. 9.4.11.1. Меню АСД#2. А) Выбор режима работы. Б) Установка сигнализации.

Меню АСД#2 организовано по тем же принципам, что и меню АСД#1, но есть некоторые отличия. Система АСД#2 имеет только один пороговый уровень. АСД#2 реализует дополнительный режим работы «Захват».

Вызов управляющего меню АСД#2 осуществляется из главного меню снизу экрана. Внешний вид управляющего меню АСД#2 показан на Рис. 9.4.11.1.А. Здесь, выберите элемент меню «АСД#2» и нажмите кнопку ... На экране дефектоскопа появляется окно с заголовком «Доп. Параметры» (Рис. 9.4.11.1.Б). В отличие от АСД#1, в этом меню производится только включение световой и (или) звуковой сигнализации.

Работа системы АСД#2 при использовании эхометода (режим «Эхо») в принципе ничем не отличается от рассмотренного ранее режима «Эхо» АСД#1. Больший интерес представляет обсуждение работы АСД#2 в режиме «Тень» (теневой, зеркально-теневой методы) и в режиме «Захват» (автоматическое удерживание сигнала на уровне строба).

Рассмотрим настройку АСД#2 для работы теневым методом. Такой контроль часто проводят на небольших стационарный установках, используют щелевой или иммерсионный способ акустического контакта.

В классическом варианте теневого метода используется два ультразвуковых преобразователя, расположенных по обеим сторонам изделия. Один преобразователь излучает зондирующие ультразвуковые импульсы, другой принимает сигналы, прошедшие изделие (Рис. 9.4.11.2.А). Если в изделии есть дефект, образуется тень от него, амплитуда прошедшего сигнала уменьшается. Это явление используют для обнаружения дефектов и разбраковки изделий. Обратите внимание, прошедший сигнал (Рис. 9.4.11.2.Б) имеет «хвост», который появляется за счет переотражения волн в зазоре щелевого контакта.

Для реализации теневого метода устанавливают режим работы АСД#2 «Тень». Строб АСД#2 устанавливают таким образом, чтобы он охватывал прошедший сигнал (Рис. 9.4.11.2.Б). Уровень АСД#2 (браковочный уровень), как правило, отсчитывают от максимального прошедшего сигнала, например – 6дБ.

Образцом для настройки дефектоскопа здесь может служить само изделие. Поступают так. Находят максимальный прошедший сигнал в изделии, когда прозвучивается его бездефектный участок. Затем уровень АСД#2 устанавливают на 6дБ ниже амплитуды прошедшего сигнала (Рис. 9.4.11.2.Б). В дальнейшем, в процессе контроля изделий система АСД#2 будет выдавать световую и (или) звуковую сигнализацию, если прошедший сигнал опустится ниже порогового уровня.

Рис. 9.4.11.2. Настройка строба АСД#2 для контроля листов теневым методом. Изделие – лист толщиной 60мм. Преобразователи П111-1,25-Ø20.
А) Схема прозвучивания листа. Теневой метод. Б) Настройка строба АСД#2.

Ультразвуковой дефектоскоп УД9812 с помощью систем АСД#1 и АСД#2 поддерживает комплексные способы анализа ультразвуковых сигналов. Типичный пример – контроль плоских изделий эхо- и зеркально-теневым методами одновременно. Такой способ контроля осуществляется одним прямым преобразователем. Здесь анализируются эхосигналы от дефектов в теле изделия (эхометод) и донный сигнал (зеркально-теневой метод).

В качестве примера покажем, как производится настройка систем АСД#1 и АСД#2 в методике контроля листов. Пусть лист имеет толщину 70мм. Применяется преобразователь П111-1,25-Ø20. Толстостенные металлические изделия, как правило, имеют неоднородности зеренной структуры, которые формируют отраженные сигналы. В методике неразрушающего контроля такие объемные неоднородности не должны выявляться, поскольку они не нарушают сплошность изделия, поэтому выбрана относительно низкая частота ПЭП 1,25 МГц.

Рис. 9.4.11.3. Схема прозвучивания СОП в методике контроля листов. СОП толщиной 70 мм. Плоскодонный отражатель Ø3мм на глубине 35мм. Преобразователь П111-1,25-Ø20.

А) Прозвучивание плоскодонного отражателя. Б) Прозвучивание донной поверхности.

Настройка производится в два этапа. Вначале устанавливается строб АСД#1 для работы эхометодом, режим «Эхо». Браковочный уровень задается эхосигналом от плоскодонного отражателя в СОП (см. Рис. 9.4.11.3.А и Рис. 9.4.11.4.А).

На втором этапе производится настройка системы АСД#2 для работы теневым методом, режим «Тень». Используется донный эхосигнал в СОП (см. Рис. 9.4.11.3.Б и Рис. 9.4.11.4.Б). Здесь браковочный уровень определяется относительно амплитуды донного эхосигнала. В методиках контроля предписывается установка положения строба АСД на 6-12 дБ ниже амплитуды донного сигнала, полученного на бездефектном участке изделия или в СОП. В данном случае проведена настройка уровня АСД#2 на 6 ниже амплитуды донного эхосигнала (Рис. 9.4.11.4.Б).

При проведении контроля активны обе системы АСД (Рис. 9.4.11.4.В). Выдача сигнализации о наличие дефекта производится либо в случае появления эхосигнала от дефекта в теле листа, срабатывает АСД#1, либо при возникновении тени от скопления мелких дефектов, тогда уменьшается амплитуда донного эхосигнала и срабатывает АСД#2. Отметим, что в режиме «УЗ контроль» (Рис. 9.4.11.4.В) чувствительность прибора увеличена на 7 дБ для удобства наблюдения эхосигналов и стробов АСД.

Рис. 9.4.11.4. Настройка стробов АСД#1 и АСД#2 для контроля листов. СОП толщиной 70 мм. Плоскодонный отражатель Ø3мм на глубине 35мм. Преобразователь П111-1,25-Ø20. А) Настройка АСД#1 в режиме «Эхо».

Б)) Настройка АСД#2 в режиме «Тень».

В) Вид стробов АСД при проведении контроля. Изделие без дефектов.

Рассмотрим теперь применение режима «Захват» АСД#2. В ультразвуковом контроле нестабильность акустического контакта между ПЭП и изделием является главным фактором, искажающим результаты разбраковки. Шероховатость поверхности изделия, толщина слоя контактной жидкости существенно уменьшают чувствительность прибора. Нестабильность чувствительности, связанная с качеством акустического контакта, особенно сильно проявляется у прямых преобразователей.

В методиках ультразвукового контроля применяют различные способы стабилизации чувствительности. Один из них основан на коррекции чувствительности по эхосигналу от известного отражателя. Как правило, это донный эхосигнал.

Поясним идею на примере. Пусть имеется изделие толщиной 220мм в параллельными поверхностями. Прозвучивание будем проводить прямым преобразователем П111-2,5-Ø14. Используем эхометод. Настройку параметров дефектоскопа проведем по СОП с искусственными отражателями. В общем случае настраивается электро-акустический тракт, развертка прибора, селектор, глубиномер, АСД#1, ВРЧ. Приемы настройки каждой системы рассматриваются в данном руководстве по эксплуатации.

Если в таком виде провести настройку и затем заниматься неразрушающим контролем, то неизбежно получим недобраковку изделий, потому что реальная чувствительность уменьшилась из-за плохого качества акустического контакта. Нужно каким-то образом увеличить чувствительность, чтобы восстановить браковочный уровень при прозвучивании изделия. Проблема состоит в том, что как правило неизвестно, насколько децибел необходимо увеличивать чувствительность.

В нашем примере, на развертке дефектоскопа есть донный сигнал. Это эхосигнал от бесконечного отражателя. Соотношение амплитуд донного эхосигнала и эхосигнала от отражателя, по которому проводилась настройка браковочной чувствительности, всегда одинаковы для конкретного преобразователя. Поэтому, если корректировать чувствительность так, чтобы амплитуда донного эхосигнала находилась на одном и том же уровне, то браковочный уровень автоматически будет воспроизводиться. Здесь, правда, используется предположение о том, что дефекты не затеняют донную поверхность, т.е. наличие дефекта не будет сильно уменьшать амплитуду донного эхосигнала.

А) Установка режима «Захват» для донного эхосигнала в СОП.

Б) Проведение контроля изделия, выявление дефекта.

Рассмотренный способ корректировки чувствительности реализован в режиме «Захват» АСД#2. В этом режиме прибор автоматически корректирует усиление приемника, поддерживая амплитуду эхосигнала, попадающего в строб, на уровне АСД#2. Итак, после общей настройки прибора необходимо включить механизм установки амплитуды донного сигнала на фиксированный уровень, т.е. включить режим «Захват» АСД#2. Придерживайтесь следующего порядка настройки:

- 1. Проведите общую настройку систем дефектоскопа: электроакустический тракт, развертка прибора, селектор, глубиномер, АСД#1 (включая браковочный уровень), ВРЧ.
- 2. Найдите максимальный донный эхосигнал в СОП. На развертке не должно быть эхосигналов от искусственных отражателей.
- 3. Установите уровень АСД#2 на вершину донного эхосигнала, затем включите режим «Захват».

Использование режима «Захват» демонстрирует Рис.9.4.11.5. Операция установки уровня АСД#2 на вершину донного эхосигнала указывает дефектоскопу соотношение браковочного уровня АСД#1 и уровня компенсации чувствительности АСД#2 (Рис. 9.4.11.5.А). В сущности, в процессе контроля изделия прибор постоянно производит настройку браковочной чувствительности относительно амплитуды донного эхосигнала (Рис. 9.4.11.5.Б).

Заметим, что при выявлении дефекта (Рис. 9.4.11.5.Б) усиление скорректировано на +8,1 дБ. Это компенсация чувствительности из-за низкого качества акустического контакта. Изделие бракуется, т.к. амплитуда эхосигнала от дефекта превышает браковочный уровень #1 на 4 дБ. Если отключить режим «Захват» АСД#2, то усиление уменьшится на 8,1 дБ, очевидно изделие будет ошибочно признано годным, т.к. амплитуда эхосигнала стала ниже браковочного уровня.

Примечание. Всегда есть эффект затенения донной поверхности дефектом или искусственным отражателем. Если используется режим «Захват» АСД#2, это обстоятельство нужно учитывать при разработке инструкции ультразвукового контроля.

9.4.12 Система временной регулировки чувствительности. Меню «ВРЧ»

Система временной регулировки чувствительности (ВРЧ) предназначена для выравнивания амплитуд эхосигналов от одинаковых отражателей, расположенных на различной глубине. Выравнивание амплитуд производят с целью установки браковочного уровня в виде горизонтальной линии.

Перед изучением способов настройки ВРЧ рекомендуется подробно ознакомится с принципами работы этой системы и с устройством управляющего меню, прочитайте П4.9. и П6.7.

Вызов управляющего меню «ВРЧ» осуществляется выбором элемента «ВРЧ» главного меню снизу экрана. В окне редактирования (Рис. 9.4.12.1.) необходимо включить систему ВРЧ. В верхней строке окна установите «вкл». Далее предлагается выбрать стиль настройки «Ручной» или «Теор. Расчет». Установите маркер на элемент меню «Стиль», затем кнопками ←, → выберите нужный стиль настройки и нажмите кнопку ↓. Прибор перейдет к редактированию ВРЧ в данном стиле. Появляется новое окно с соответствующим меню.

Настройки системы ВРЧ подробно излагается в ниже следующих параграфах.

Рис. 9.4.12.1. Меню выбора стиля настройки системы временной регулировки чувствительности.

9.4.13 Настройка ВРЧ в стиле «Ручной»

Стиль «Ручной» системы ВРЧ позволяет проводить произвольную настройку чувствительности во времени по 16 точкам (см. П4.9.). После выбора стиля «Ручной» на экран прибора выводится два окна. Справа расположено окно редактирования, а слева – окно параметров точки ВРЧ. На развертке прибора отображается линия усиления – график ВРЧ. Устройство меню демонстрирует Рис. 9.4.13.1.

Рис. 9.4.13.1. Устройство меню ВРЧ в стиле «Ручной».

Настройка ВРЧ производится по эхосигналам от искусственных отражателей в СОП. Отражатели должны быть одинакового размера и располагаться на различной глубине. Типовая настройка состоит из последовательности операций.

- 1. Выберите элемент меню «Сброс настройки», прибор проведет очистку настройки ВРЧ.
- 2. Найдите максимум эхосигнала от первого отражателя. Зафиксируйте преобразователь в этом положении.
- 3. Выберите точку ВРЧ 01. Перемещайте точку 01 по горизонтали и установите ее на первый эхосигнал. Затем перемещайте точку 01 по вертикали до тех пор, пока амплитуда эхосигнала не установится на выбранный уровень, обычно 0 дБ по разметке экрана.
- 4. Найдите максимум второго эхосигнала, зафиксируйте ПЭП. Выберите точку ВРЧ 02 и с ее помощью установите амплитуду второго эхосигнала на выбранный уровень. Фактически нужно повторить операции 1 и 2 для второго эхосигнала и второй точки.
- 5. Аналогично проведите операции настройки амплитуды третьего, четвертого эхосигналов и так далее. С каждым эхосигналом нужно сопоставлять одну точку ВРЧ.

Возможно, данная последовательность операций выглядит слишком абстрактно. Рассмотрим пример настройки ВРЧ в методике контроля стыкового сварного шва. Здесь используется СОП с угловыми отражателями (зарубками). Схема прозвучивания СОП показана на Рис. 9.4.13.2. В таких образцах амплитуда эхосигнала от нижней зарубки (положение ПЭП 1) всегда больше, чем амплитуда эхосигнала от верхней зарубки (положение ПЭП 2). Наша задача – с помощью системы ВРЧ установить амплитуды эхосигналов на один и тоже уровень.

Уровень, на который проводится выравнивание амплитуд эхосигналов, должен быть согласован с порогом срабатывания системы АСД (браковочный уровень). В режиме настройки ВРЧ стробы АСД не отображаются, поэтому нужно запомнить положение строба АСД и, потом устанавливать амплитуды эхосигналов на этот уровень.

Рис. 9.4.13.2. Схема прозвучивания угловых отражателей (зарубок) в СОП.

Рис. 9.4.13.3. Последовательность настройки ВРЧ в стиле «Ручной».
СОП толщиной 18мм. Зарубки 3,5*2.0 мм. Преобразователь П121-2,5-65°-Ø14.
Редактируемая точка ВРЧ отмечена на рисунках красным квадратом. На экране дефектоскопа редактируемая точка мигает.
А) Установка эхосигнала от нижней зарубки на уровень 0дБ по экрану. Точка ВРЧ 01.
Б) Установка эхосигнала от верхней зарубки на уровень 0дБ по экрану. Точка ВРЧ 02.
В) Выравнивание чувствительности за эхосигналом от верхней зарубки. Точка ВРЧ 03.

В частности, в методиках контроля сварных соединений выравнивание амплитуд эхосигналов от зарубок должно выполняться на браковочный уровень. Когда ранее выполнялась настройка системы АСД#1 (см. П9.4.10), браковочный уровень #1 был установлен,

например 39 дБ. Если усиление прибора тоже 39 дБ, это означает, что выравнивание амплитуд должно выполняться на уровень 0 дБ по экрану (Рис. 9.4.13.3.).

Настройка ВРЧ по эхосигналам в СОП (Рис. 9.4.13.2.) выполняется следующим образом.

- 1. Если в приборе ранее была установлена какая-либо кривая ВРЧ, рекомендуется выполнить сброс настройки. Для этого установите маркер на элемент меню «Сброс настройки» и нажмите кнопку ل. Тогда усиление во всех точках ВРЧ будет сброшено в 0 дБ, и точки будут расположены по возможности в пределах экрана.
- 2. Найдите максимум эхосигнала от нижней зарубки, положение ПЭП 1 на Рис. 9.4.13.2, зафиксируйте преобразователь. Выберите точку ВРЧ 01. Кнопками ←, → установите точку ВРЧ 01 на эхосигнал, затем, пользуясь кнопками ↑, ↓, установите амплитуду эхосигнала на уровень 0 дБ по разметке экрана Рис. 9.4.13.3.А.
- 3. Найдите максимум эхосигнала от верхней зарубки, положение ПЭП 2 на Рис. 9.4.13.2, зафиксируйте преобразователь. Выберите точку ВРЧ 02. Кнопками ←, → установите точку ВРЧ 02 на эхосигнал, затем, пользуясь кнопками ↑, ↓, установите амплитуду эхосигнала на уровень 0 дБ по разметке экрана Рис. 9.4.13.3.Б.
- 4. Выберите точку ВРЧ 03. Переместите ее в конец развертки и установите усиление в ней такое же, как у точки ВРЧ 02 Рис. 9.4.13.3.В.

Последняя операция выполняется для удобства наблюдения эхосигналов в сварном шве. Формально, достаточно провести выравнивание амплитуд в пределах строба ACД#1, т.е. от эхосигнала нижней зарубки до эхосигнала верхней зарубки. Однако, в процессе сканирования эхосигналы перемещаются по развертке, т.к. ПЭП имеет некоторую диаграмму направленности ультразвукового поля. Заметим, что на этапе 3 настройки усиление неравномерно вблизи эхосигнала от верхней зарубки (Рис. 9.4.13.3.Б). Если оставить настройку в таком виде, трудно будет находить максимум эхосигнала от дефекта в конце строба ACД#1.

После настройки рекомендуется проверить работу системы ВРЧ. Отмените выбор системы ВРЧ кнопкой F1 – F4, расположенной под элементом главного меню. На экране прибора будет отображаться строб АСД#1. Найдите максимум эхосигнала от нижней и затем от верхней зарубки в СОП. Эхосигналы должны располагаться, как показано на Рис. 9.4.13.4.

Рис. 9.4.13.4. Проверка настройки ВРЧ в стиле «Ручной». СОП толщиной 18мм. Зарубки 3,5*2.0 мм. Преобразователь П121-2,5-65⁰-Ø14. А) Эхосигнал от нижней зарубки в СОП. Б) Эхосигнал от верхней зарубки в СОП.

9.4.14 Настройка ВРЧ в стиле «Теор. Расчет»

Стиль теоретический расчет предназначен для замены технологий контроля с использованием АРД диаграмм, АРД шкал, SKH диаграмм и т.п. Коррекция усиления приемника во времени (от расстояния до дефекта) в данном стиле производится на основании известных теоретических зависимостей.

Предупреждение. Стиль «Теор. Расчет» можно использовать только при прозвучивании дефектов в дальней зоне ультразвукового поля преобразователя.

Кратко ознакомимся с устройством ВРЧ. На развертке прибора отображается график ВРЧ (Рис. 9.4.14.1.) В строке усиления производится индикация стиля ВРЧ.

Рис. 9.4.14.1. Устройство системы ВРЧ в стиле «Теор. Расчет».

В стиле «Теор. Расчет» на экране прибора отображаются два окна: справа – окно редактирования с заголовком «Теор. Расчет» и слева – окно параметров кривой ВРЧ (Рис. 9.4.14.2.). Меню настройки в окне «Теор. Расчет» содержит две строки «Тип кривой ВРЧ» и «Точка».

В первой строке кнопками ←, → устанавливается тип кривой ВРЧ. Кнопка ↓ открывает дочернее окно, предназначенное для подробного описания кривой ВРЧ (Рис. 9.4.14.3.). Здесь в строке «Зависимость амплитуды от расстояния» еще раз устанавливается тип кривой ВРЧ. В ниже следующих строках вводится затухание и скорость звука.

Во второй строке окна «Теор. Расчет» производится выбор точки ВРЧ (начало или конец) и редактирование их положений.

Если точка ВРЧ не выбрана, поле надписи «Начало» или «Конец» черное. Кнопки ←, → осуществляют циклические переходы от точки «Начало» к точке «Конец» и т.д. Указанная точка отмечается на экране мерцающим квадратом.

При нажатии на кнопку – прибор переходит к редактированию параметров ВРЧ в данной точке. На развертке дефектоскопа точка отмечается мигающим квадратом. Поле надписи становится белым – точка выбрана для редактирования.

Если выбрана точка «Начало», кнопки \leftarrow , \rightarrow меняют ее положение во времени, а кнопки \uparrow , \downarrow устанавливают сдвиг кривой ВРЧ. Если выбрана точка «Конец» кнопки \leftarrow , \rightarrow также меняют ее положение во времени, а кнопки \uparrow , \downarrow устанавливают перепад кривой ВРЧ. В последнем случае перепад кривой ВРЧ корректируется путем изменения коэффициента затухания. Повторное нажатие на кнопку \downarrow переводит прибор в режим выбора точки.

Прибор автоматически рассчитывает кривую ВРЧ в стиле «Теор. Расчет» при изменении любого их параметров. Действие ВРЧ мгновенно отражается на развертке эхосигналов.

Рис. 9.4.14.2. Устройство меню редактирования ВРЧ в стиле «Теор. Расчет».

Рис. 9.4.14.3. Меню редактирования параметров кривой ВРЧ в стиле «Теор. Расчет».

Типовая последовательность операций настройки ВРЧ.

- Выбор параметров кривой ВРЧ. В окне параметров кривой ВРЧ (Рис. 9.4.14.3.) устанавливают тип кривой, затухание волн в материале и скорость звука. Очевидно, эти характеристики материала должны быть известны. Амплитудный критерий браковки, как правило, формулируется для компактных отражателей, для них устанавливают тип кривой ВРЧ – R^{^2}.
- 2. Установка зоны ВРЧ. В окне редактирования (Рис. 9.4.14.2.) устанавливают диапазон кривой задержку точек «Начало» и «Конец». Кривая ВРЧ должна охватывать зону появления эхосигналов от дефектов (строб АСД). Кроме того, кривая ВРЧ должна захватывать эхосигнал в СОП или СО, по которому производится настройка опорного уровня чувствительности.
- 3. Настройка опорного уровня. Находят максимум эхосигнала от отражателя в СОП или СО и, регулируя сдвиг кривой ВРЧ в точке «Начало», устанавливают амплитуду эхосигнала на уровень 0 дБ по разметке экрана.
- 4. Согласование опорного и браковочного уровней. Уровень настройки ВРЧ должен быть согласован с браковочным уровнем АСД, так как эхосигнал в СОП, СО в общем случае не соответствует эхосигналу от максимально допустимого деффекта. Для этого

фиксируют усиление К [дБ], при котором с проводилась настройка опорного уровня, определяют отношение амплитуд опорного и браковочного уровней ΔK [дБ] и устанавливают усиление браковочного уровня АСД, равное К + ΔK .

9.4.15 Использование стиля ВРЧ «Теор. Расчет» для замены технологии контроля по АРД шкалам и АРД диаграммам.

Способ настройки браковочной чувствительности прибора по АРД шкале или АРД диаграмме широко применяется в методиках ультразвукового контроля толстостенных сварных соединений.

Соотношения амплитуд эхосигналов от различных отражателей, а также зависимости амплитуды от расстояния, хорошо воспроизводятся на практике при прозвучивании их в дальней зоне ультразвукового поля ПЭП. Если провести настройку опорного уровня чувствительности по амплитуде эхосигнала от какого-либо известного отражателя, то чувствительность можно скорректировать на известную величину и получить браковочный уровень.

Принцип настройки состоит в том, что сначала устанавливают некоторый опорный уровень по амплитуде эхосигнала от отверстия Ø6 мм в СО-2, затем вручную, пользуясь АРД шкалой, корректируют усиление и устанавливают браковочный уровень.

Данный подход позволяет отказаться от большой номенклатуры СОП, изготовленных для контроля изделий в широком диапазоне толщин и по различным нормам браковки. Во всех случаях используется только один образец СО-2.

К недостаткам традиционного подхода следует отнести высокую трудоемкость контроля изделий. Действительно, в процессе контроля нужно постоянно пользоваться АРД шкалой для перехода на поисковый уровень, браковочный или уровень фиксации, причем вводимое изменение чувствительности (по АРД шкале) зависит от глубины залегания дефекта.

Прибор УД9812 позволяет установить временную регулировку чувствительности в соответствии АРД диаграммой преобразователя. Таким образом, выравнивание амплитуд эхосигналов осуществляется автоматически. Остается только настроить браковочный уровень.

С этой целью проводится настройка опорного уровня по эхосигналу от отверстия \emptyset 6 мм в СО-2. Далее определяется поправка усиления ΔK [дБ], которая характеризует соотношение опорного и браковочного уровней и, наконец, усиление браковочного уровня АСД устанавливается с учетом данной поправки (см. методику настройки ВРЧ П9.4.14).

Рассмотрим способы определения величины ΔK .

Для расчета ΔК нам необходимо знать эквивалентную площадь отверстия в CO-2. Эти данные приведены в Табл. 9.4.15.1. и Табл. 9.4.15.2. для ультразвуковых преобразователей, поставляемых к прибору.

Таблица 9.4.15.1.

Эквивалентная площадь отверстия Ø6 мм в образце СО-2 при прозвучивании его на глубине 44 мм различными наклонными преобразователями.

Материал Стго. Скорость поперечных волн 5200 м/с.			
Тип преобразователя	Эквивалентная площадь (мм ²)		
П121-1,8-40°-14*14	16,8		
П121-1,8-50°-14*14	18,3		
П121-1,8-65 ⁰ -14*14	22,6		
П121-2,5-40°-Ø14	12,1		
П121-2,5-50°-Ø14	13,2		
П121-2,5-65°-Ø14	16,3		

Материал Ст20. Скорость поперечных волн 3260 м/с.

П121-5,0-40°-Ø8	6,0
П121-5,0-50°-Ø8	6,6
П121-5,0-65°-Ø8	8,1
П121-5,0-70°-Ø8	9,0

Таблица 9.4.15.2.

Эквивалентная площадь отверстия Ø6 мм в образце CO-2 при прозвучивании его на глубине **15 мм** различными наклонными преобразователями.

Тип преобразователя	Эквивалентная площадь (мм ²)
П121-5,0-65°-Ø8	4,8
П121-5,0-70°-Ø8	5,3
П121-8,0-65°-5*4	3,0
П121-8,0-70°-5*4	3,3

J 1			1	1	
Материал Ст20	. Скорость	поперечных	волн	3260	м/с.

Во многих методиках контроля браковочный уровень задают в виде максимально допустимой эквивалентной площади дефекта $S_{\text{БР}}$ [мм²]. Тогда, расчет соотношения амплитуд опорного и браковочного уровней выполняют по формуле

$$\Delta K = 20 \text{ Log} (S_{\text{CO-2}}/S_{\text{BP}}),$$

где: $\Delta K [дБ]$ – отношение амплитуд опорного и браковочного уровней,

S_{БР} [мм²] – эквивалентная площадь максимально допустимого дефекта (берется из инструкции),

S_{CO-2} [мм²] – эквивалентная площадь отверстия Ø6 мм в CO-2

(зависит от типа преобразователя, см. Табл. 9.4.15.1-2.).

Например, нужно проконтролировать сварной шов толщиной 12 мм. Используем преобразователь П121-5,0-65°-Ø8. В инструкции указано, что максимально допустимая эквивалентная площадь дефекта 2,5 мм² (РД 34.17.302-97). В качестве опорного уровня берем эхосигнал от отверстия Ø6 мм на глубине 15 мм в СО-2. По табл. 9.4.15.2. находим, что эквивалентная площадь отверстия для этого ПЭП 4,8 мм². По формуле производим расчет отношения амплитуд

$$\Delta K = 20 \text{ Log} (4,8/2,5) = +5,7 \text{ дБ}.$$

Проводим округление ΔK до = +5,5 дБ. Это означает, что усиление браковочного уровня АСД#1 должно быть на 5,5 дБ больше усиления, при котором устанавливался опорный уровень по эхосигналу от отверстия Ø6 мм на глубине 15 мм в СО-2. Выравнивание амплитуд в зоне контроля производится системой ВРЧ в стиле «Теор. Расчет».

В инструкциях ультразвукового контроля часто указывается размер углового отражателя (зарубки). Можно ли установить эти нормы браковки по образцу СО-2, используя ВРЧ в стиле «Теор. Расчет»? Конечно да, если прозвучивание изделия производится в дальней зоне ультразвукового поля ПЭП. Главный вопрос, который нужно решить, это на сколько децибел отличается амплитуда эхосигнала от зарубки и амплитуда эхосигнала от отверстия в СО-2.

В ГОСТ 14782-86 вводится коэффициент N, назовем его отражательная способность зарубки

$$\mathbf{N} = \mathbf{S}_{\mathrm{\Im KB.3}} \, / \mathbf{S}_3 \, ,$$

где: S_{ЭКВ.3} [мм²] – эквивалентная площадь зарубки,

S₃ [мм²] – площадь вертикальной стенки зарубки.

Отражательная способность зарубки N зависит от угла ввода преобразователя и не зависит от частоты (длины волны) излучения – так утверждает ГОСТ 14782-86. Численные значения N представлены в Табл. 9.4.15.3.

Таблица 9.4.15.3.

Материал Ст20. Скорость поперечных волн 3260 м/с.		
Угол ввода ПЭП	N	
40°	2,3	
50°	1,5	
65°	0,5	
70°	0,7	

Отражательная способность зарубки, коэффициент N, согласно ГОСТ 14782-86. Материан Ст20. Скорость нонеренных роди 3260 м/с

Теперь понятно, что нужно определить эквивалентную площадь зарубки, затем эквивалентную площадь отверстия в СО-2 и найти отношение амплитуд эхосигналов. Объединим вычисления в одну формулу

$$\Delta K = 20 \text{ Log } (S_{\text{CO-2}}/\text{N/S}_3) .$$

Например, контролируется сварной шов толщиной 16 мм преобразователем П121-2,5-65°- \varnothing 14. В инструкции (ВСН 012-88) указаны размеры зарубки 2,5*2,0 мм, характеризующей максимально допустимый дефект. Используем ВРЧ в стиле «Теор. Расчет» для выравнивания амплитуд эхосигналов в зоне контроля. В качестве опорного эхосигнала выберем эхосигнал от отверстия \varnothing 6 мм на глубине 44 мм в СО-2. Из выше приведенных таблиц находим: S_{CO-2}= 16,3мм², N = 0,5. Вычисляем отношение амплитуд

$$\Delta K = 20 \text{ Log} (16,3/0,5/5) = +16,3 дБ, округляем до +16 дБ.$$

Таким образом, усиление браковочного уровня АСД#1 должно быть увеличено на 16 дБ относительно настройки опорного уровня.

Процедуру настройки ВРЧ рассмотрим на примере контроля стыкового сварного соединения толщиной 40мм. Здесь применяется преобразователь П121-2,5-50°-Ø14. Норма браковки выражена в виде максимально допустимой эквивалентной площади дефекта 10 мм² (РД 34.17.302-97). Для настройки прибора используется только образец СО-2.

Вначале система ВРЧ отключена. Проводится настройка электроакустического тракта (П9.4.1.), установка диапазонов отображения сигналов (П9.4.2.), настройка селектора (П9.4.3.) и глубиномера (П9.4.4.). В частности, устанавливается режим работы селектора «по пику», режим измерения амплитуды относительно АСД#1. Глубиномер настраивается в стиле «авторасчет» по эхосигналам от углов образца СО-2.

Система АСД#1 настраивается частично, только зона обнаружения дефектов. Так как нет эхосигналов, указывающих начало и конец строба АСД, используем следующий прием. В меню «Экран» установим разметку по горизонтали – ммҮ. Строб АСД#1 установим по разметке экрана от глубины залегания дефекта 40 мм до 80 мм. Тогда АСД#1 захватывает эхосигналы от непроваров в корне шва (Y=40мм, прозвучивание прямыми лучами ПЭП) и эхосигналы от дефектов в теле шва вплоть до валика усиления (максимальная глубина дефекта Y=80мм, прозвучивание однажды отраженными лучами ПЭП).

Усиление браковочного уровня АСД#1 пока установлено произвольно. Окончательно браковочный уровень будет установлен после настройки ВРЧ. Усиление прибора установлено с таким расчетом, чтобы эхосигналы от образца СО-2 наблюдались на экране.

На Рис.9.4.15.1. показан вид экрана прибора после проведения выше перечисленных операций.

Теперь включаем систему ВРЧ, устанавливаем стиль «Теор. Расчет». Будем действовать по типовой методике настройки (см. П9.4.14).

Во-первых, установим параметры кривой ВРЧ:

- тип кривой R^{2} , поскольку плоскодонный отражатель является компактным;
- затухание 0 дБ/м. Фактически пренебрегаем поглощением и рассеянием волн в материале. Такое допущение справедливо, если металл имеет однородную мелкозернистую структуру и не использовался длительное время в эксплуатации. В противном случае, необходимо оценивать затухание в материале и указывать его;
- скорость звука 3260 м/с. Это скорость поперечных волн в малоуглеродистой стали.

Во-вторых, установим зону ВРЧ. Как отмечалось ранее, зона ВРЧ должна охватывать строб АСД#1 и эхосигнал от СО-2. В данном примере зона ВРЧ установлена от 30 до 90 мм по глубине залегания дефектов (координата Y).

В-третьих, проведем настройку опорного уровня. Для этого, находим максимум эхосигнала от отверстия Ø6 мм на глубине 44 мм в CO-2. Фиксируем преобразователь в этом положении. Затем выбираем для редактирования точку «Начало» и, перемещая ее вверх-вниз, устанавливаем амплитуду эхосигнала на уровень 0 дБ по разметке экрана. По окончании этой операции необходимо запомнить усиление прибора K= 24 дБ. Вид экрана прибора в настроенном состоянии ВРЧ показан на Рис. 9.4.15.2.

Рис. 9.4.15.1. Состояние прибора перед операциями настройки ВРЧ в стиле «Теор. Расчет».

Последняя операция состоит в согласовании опорного и браковочного уровней. Найдем отношение амплитуд опорного и браковочного уровней - ΔK . По Табл. 9.4.15.1. находим эквивалентную площадь отверстия Ø6 мм на глубине 44 мм в CO-2 при прозвучивании его нашим преобразователем, $S_{CO-2}=13,2 \text{ мм}^2$. Эквивалентная площадь максимально допустимого дефекта задана в инструкции, $S_{\text{БР}} = 10 \text{ мм}^2$. Проводим вычисления

 $\Delta K = 20 \text{ Log} (13,2/10) = +2,4 \text{ дБ}$, округляем до +2,5 дБ.

В итоге получаем усиление браковочного уровня $K + \Delta K = 24 \text{д}\text{E} + 2.5 \text{d}\text{E} = 26.5 \text{ d}\text{E}$ и устанавливаем его в АСД#1 (Рис.9.4.15.3.). Настройка закончена!

Рис. 9.4.15.2. Результат настройки ВРЧ в стиле «Теор. Расчет». Проведена установка зоны ВРЧ и настройка опорного уровня.

 $K + \triangle K = 24$ дB + 2.5дB = 26.5 дB

Рис. 9.4.15.3. Установка браковочного уровня АСД#1.

Примеры выявления несплошностей в реальном сварном шве с данной настройкой прибора представлены на Рис.9.4.15.4. Заметим, что в режиме ультразвукового контроля усиление прибора увеличено до 26 дБ для удобства наблюдения сигналов. Настройка при этом не искажается.

Рис. 9.4.15.4. Эхосигналы от несплошностей в сварном шве толщиной 40мм. Преобразователь П121-2,5-50°-Ø14.

А) Допустимая несплошность над корнем сварного шва. Б) Дефект в середине сварного шва.

В заключение еще раз подчеркнем, что данная технология настройки работает только при прозвучивании отражателей в дальней зоне ультразвукового поля ПЭП. Размеры ближней зоны ультразвуковых преобразователей представлены в Табл. 9.4.15.4. Числа в таблице показывают минимальную глубину расположения отражателя, с которой можно использовать ВРЧ в стиле «Теор. Расчет».

Таблица 9.4.15.4.

Максимальный размер ближней зоны ультразвукового поля различных наклонных преобразователей, поставляемых к прибору УД9812.

Multephal 0120. exeptetib nonepe mbix boim 5200 m e.			
Тип преобразователя	Размер ближней зоны		
	(отсчет производится от точки ввода)		
	По лучу (мм)	По кооринате Ү (мм)	
П121-1,8-40°-14*14	36	27	
П121-1,8-50°-14*14	34	22	
П121-1,8-65°-14*14	27	14	
П121-2,5-40°-Ø14	45	34	
П121-2,5-50°-Ø14	41	26	
П121-2,5-65°-Ø14	37	16	
П121-5,0-40°-Ø8	28	21	
П121-5,0-50°-Ø8	26	17	
П121-5,0-65°-Ø8	24	10	
П121-5,0-70°-Ø8	21	8	
П121-8,0-65°-5*4	18	7	
П121-8,0-70°-5*4	15	5	

Материал Ст20. Скорость поперечных волн 3260 м/с

9.4.16 Установка часов и календаря. Управление будильниками

Последний элемент главного меню «Часы Будильник» дает возможность корректировать дату и время внутренних часов прибора, а также позволяет управлять состоянием будильников и задавать их время срабатывания. Внешний вид окна управляющего меню представлен на Рис. 9.4.16.1.

Рис. 9.4.16.1. Меню установки часов, календаря и состояния будильников.

Рис. 9.4.16.2. Сообщение от будильника.

Рис. 9.4.16.3. Автоматическое включение прибора при срабатывании будильника.

Если будильник включен, то в установленное время прибор выдает звуковую индикацию и окно сообщения (Рис. 9.4.16.2.). Данное окно содержит меню «Остановить» и «Выключить». Выбор элемента меню «Остановить» прекращает звуковую индикацию, окно сообщения пропадает, но будильник остается включен. Через 24 часа будильник снова сработает и выдаст звуковую индикацию и окно сообщения. При выборе элемента меню «Выключить», будильник будет отключен.

Будильник срабатывает, даже если прибор выключен. В этом случае прибор автоматически включается, выдается звуковая индикация и окно сообщения будильника – Рис.9.4.16.3. Если в течение 4 минут не начинать работу с прибором, он автоматически выключается.

9.4.17 Запоминание, загрузка и стирание настроек

Организация меню памяти настроек прибора подробно рассматривается в П6.9. В режиме «Настройка» меню вызывается нажатием на кнопку «Данные». На экране прибора появляется карта файлов настроек – Рис. 9.4.17.1.А.

В главном окне «Карта файлов НАСТРОЕК» файлы представлены в виде прямоугольных ячеек, расположенных в шахматном порядке. Если в файле нет данных настройки, он отображается прямоугольной ячейкой с белым фоном, если же настройка записана в файл, в ячейке отображается символ «І» на черном фоне (Рис. 9.4.17.1.А). В окне имеется маркер, указывающий на выбранный файл или элемент меню. Маркер перемещается кнопками $\uparrow, \downarrow, \leftarrow$, \rightarrow . Для выбора файла настройки необходимо установить маркер на соответствующую ячейку и нажать кнопку \downarrow . Тогда появляется окно операций с файлом (Рис. 9.4.17.1.Б). Реакции кнопок $\uparrow, \downarrow, \downarrow$, передаются этому окну.

В заголовке окна Рис. 9.4.17.1.Б указан номер выбранного файла настройки «ФАЙЛ ХХ». Здесь и далее ХХ – номер файла. Ниже в окне отображаются операции с файлом «Загрузить» и «Сохранить». Последний элемент меню «Закрыть» предназначен для перехода обратно в главное окно. Здесь с помощью кнопок ↑, ↓ указывается элемент меню, а затем кнопкой ↓ производится его выбор.

Рассмотрим работу меню «Сохранить» в окне операций с файлом. При выборе этого элемента меню открывается окно с заголовком «Сохранить в ФАЙЛ XX» (Рис. 9.4.17.1.В). В процессе работы с этим окном данные настройки подготавливаются к записи, формируется блок данных. При выборе элемента меню «Сохранить в файл» блок данных настройки записывается в энергонезависимую память.

В момент открывания окна «Сохранить в ФАЙЛ XX» выполняются следующие действия:

- считывается текущая дата и время,
- считывается информация об ультразвуковом преобразователе из меню «Информация о ПЭП» электроакустического тракта,
- все параметры настройки дефектоскопа и параметры состояния меню копируются в блок данных настройки.

В этот момент блок данных настройки сформирован, но еще не записан в энергонезависимую память.

Вначале нужно записать сопроводительную информацию к данным настройки. Установите маркер на верхнюю строку комментарий и нажмите кнопку \downarrow . Появляется окно ввода символьной информации (см. Рис. 9.4.17.2.А). В строке появляется мигающий курсор, который отмечает позицию редактируемого символа. Теперь кнопки $\uparrow, \downarrow, \leftarrow, \rightarrow$ перемещают маркер по таблице символов. Кнопкой \downarrow производится вставка символа в строку. При этом символ вставляется в позицию курсора в редактируемой строке, а сам курсор переходит в следующую позицию.
Окно ввода символьной информации захватывает реакции кнопок главного меню F1, F2 и F4. Кнопки F1, F2 перемещают курсор в редактируемой строке. Кнопка F4 предназначена для закрытия окна.

Запись голосового сообщения осуществляется выбором элемента меню «Сказать» в окне «Сохранить в ФАЙЛ ХХ» (Рис. 9.4.17.2.Б). Установите маркер на этот элемент меню и нажмите кнопку J. Появляется окно с заголовком «ГОВОРИТЕ!». Скажите сообщение к данной настройке и снова нажмите кнопку J. Окно пропадает. Голосовое сообщение записано в энергонезависимую память прибора. Если не нажимать кнопку J, то по истечению 31,7 секунд окно автоматически закрывается, запись сообщения прекращается.

Все время, когда отображается окно с заголовком «ГОВОРИТЕ!», производится запись сигналов микрофона, встроенного в прибор. Данное окно использует кнопки \uparrow , \downarrow для регулировки чувствительности микрофона. При этом изменяется коэффициент передачи микрофонного усилителя. Во второй строке окна есть подсказка «Усиление $\uparrow\downarrow$ ». Ниже показан коэффициент передачи усилителя в децибелах. В нижней строке окна выводится текущее время записи голосового сообщения. Кроме того, в окне изображается индикатор интенсивности звукового сигнала.

- А) Карта файлов настроек.
- Б) Окно операций с файлом.
- В) Меню сохранения настройки в файл.

Под элементом меню «Сказать» расположен элемент меню «Прослушать», при выборе которого производится вывод голосового сообщения на динамик (Рис. 9.4.17.2.В). Выбор элемента меню «Прослушать» сопровождается окном с заголовком «СЛУШАЙТЕ!». Это окно работает точно также как окно «СЛУШАЙТЕ!» из меню загрузки файла.

Если по каким-либо причинам дефектоскописту не понравилась запись голосового сообщения, его можно создать заново. Для этого выберите элемент меню «Сказать» и снова скажите сообщение. Элемент меню «Прослушать» используется для проверки качества записи голосового сообщения.

Запись данных настройки в файл осуществляется выбором элемента меню «Сохранить в файл» (Рис. 9.4.17.2.Г). Если запись данных в энергонезависимую память прошла без ошибок, на экран выводится сообщение «Сохранение настройки ОК», в противном случае выводится информация об ошибках.

Закрытие окна «Сохранить в ФАЙЛ XX» производится при выборе элемента меню «Закрыть».

Файл данных настройки состоит из двух частей. Первая часть – параметры настройки прибора и текстовая информация, вторая часть – голосовое сообщение. Обе части записываются в файл независимо друг от друга. Голосовое сообщение (часть 2) записывается в энергонезависимую память (в файл) в режиме реального времени, когда выбран элемент меню «Сказать». Параметры настройки (часть 1) записываются в энергонезависимую память при выборе элемента меню «Сохранить в файл».

Рис. 9.4.17.2. Процесс записи данных в файл настройки №16. А) Ввод тестовых данных. Б) Запись голосового сообщения. В) Прослушивание голосового сообщения. Г) Сохранение настройки в файл №16.

Если дефектоскопист записал голосовое сообщение (часть 1), но не выполнил запись данных настройки (часть 2), то в карте файлов настроек данный файл будет отображен как не содержащий информации. При попытке загрузки этого файла будет выводиться сообщение «НЕТ ДАННЫХ В ФАЙЛЕ», но голосовое сообщение будет воспроизводиться на динамик.

Алгоритм записи данных настройки в энергонезависимую память вначале производит стирание старых данных в ней, а затем записывает новые данные. Поэтому, если в файле уже была сохранена какая-либо настройка прибора и производится запись новой настройки в него, то в результате этот файл будет содержать новую настройку.

Рис. 9.4.17.3. Процесс загрузки настройки из файла №16.
А) Меню загрузки настройки из файла.
Б) Прослушивание голосового сообщения.
В) Загрузка настройки из файла №16.

При выборе элемента меню «Загрузить» открывается окно с заголовком «Загрузить из ФАЙЛА XX». В данном окне отображается общая информация о настройке – дата, время, информация о ПЭП, комментарии (см. Рис. 9.4.17.3). Кроме того, есть три элемента меню «Прослушать», «Загрузить из файла» и «Закрыть». Последний элемент меню «Закрыть» используется для возврата в окно операций с файлом. Окно загрузки предназначено для предварительного просмотра информации. Если в файле нет данных настройки, все строки заполняются символом «#».

Здесь можно прослушать голосовое сообщение, выбрав элемент меню «Прослушать» (Рис. 9.4.17.3.Б). Кнопками ↑, ↓ установите маркер на элемент «Прослушать» и нажмите кнопку ↓. Тогда голосовое сообщение данного файла будет выводиться на динамик, а на экране прибора

появляется окно с заголовком «СЛУШАЙТЕ!», в котором отображается процесс воспроизведения голоса. Теперь кнопки ↑, ↓ управляют громкостью. Во второй строке окна отображается подсказка «Громкость ↑, ↓». В третьей строке показан коэффициент передачи усилителя воспроизведения (дБ). В нижней строке отображается текущее время голосового сообщения (с). В правой части окна имеется индикатор интенсивности голосового сигнала. По окончании проигрывания сообщения динамик отключается и окно «СЛУШАЙТЕ!» пропадает. Можно прекратить воспроизведение раньше, нажав на кнопку ↓. Повторное нажатие на кнопку ↓ инициирует воспроизведение голоса сначала.

Установка настройки, записанной в файле, производится выбором элемента меню «Загрузить из файла» (Рис. 9.4.17.3.В). В этом случае параметры настройки копируются из энергонезависимой памяти в оперативную память прибора. Если чтение энергонезависимой памяти прошло успешно, на экран выводится сообщение «Установлена новая настройка прибора». В противном случае, когда обнаружены ошибки чтения (память не исправна), на экран выводится сообщение «Истановлена новая настройка агрузить настройку из файла, в котором нет данных, то выдается сообщение «НЕТ ДАННЫХ В ФАЙЛЕ». Параметры прибора остаются без изменения.

В главном окне «Карта файлов НАСТРОЕК». Здесь есть три элемента меню:

- Авто просмотр информации (ДА/НЕТ),
- Авто прослушивание (ДА/НЕТ),
- CTEPETb BCE!

Переход к этим элементам меню производится кнопками \uparrow, \downarrow , если закрыты все дочерние окна.

Элементы меню «Авто - просмотр информации» и «Авто- прослушивание» используются для быстрого нахождения настройки. Идея состоит в том, чтобы при перемещении маркера по ячейкам файлов автоматически отображалась общая информация о настройке и (или) автоматически воспроизводилось голосовое сообщение (Рис. 9.4.17.4.).

Рис. 9.4.17.4. Режимы авто-просмотра и авто-прослушивания данных в файлах настройки.

Если в элементах меню «Авто- …» установить «ДА», то в нижней части экрана появляются дополнительные окна с информацией о настройке – Рис. 9.4.17.4. При установке маркера на ячейку файла информация в окнах автоматически обновляется, начинается воспроизведение голосового сообщения данного файла.

Выбор элемента меню «СТЕРЕТЬ ВСЕ!» открывает окно стирания файлов настроек (Рис. 9.4.17.5.). Здесь имеется индикатор процесса стирания и два элемента меню «СТИРАНИЕ» и «Выход». Очевидно выбор элемента меню «Выход» закрывает данное окно.

При выборе элемента меню «СТИРАНИЕ» производится полное стирание всех файлов настроек вместе с голосовыми сообщениями. Этот процесс продолжается примерно 7-10

секунд. В течение этого времени полностью блокируются реакции всех кнопок на передней панели прибора за исключением кнопки «Вкл-Выкл».

Рис. 9.4.17.5. Стирание настроек. А) Процесс стирания. Б) Сообщение об успешном стирании настроек.

ВНИМАНИЕ! Несвоевременное прерывание процесса стирания энергонезависимой памяти может привести к выходу ее из строя. Поэтому запрещается выключать прибор во время стирания файлов.

Процесс стирания файлов отображается на индикаторе в виде движущейся широкой линии (Рис. 9.4.17.5.А). Номер стираемого файла выводится в центре индикатора. При успешном стирании всех файлов на экран выдается сообщение «Стирание настроек ОК» (Рис. 9.4.17.5.Б). Если были обнаружены ошибки, на экран выводится сообщение об ошибках. После всех выше указанных действий производится обновление карты файлов настроек. Все ячейки файлов становятся пустыми.

Отметим, что настройка прибора определяется методикой контроля, нормами браковки, типом изделия и типом ультразвукового преобразователя. Настройка сильно зависит от конкретного преобразователя, т.к. ультразвуковые поля ПЭП имеют разброс по характеристикам, даже если используется один и тот же тип ПЭП. Поэтому настройка, сохраненная в приборе, должна сопровождаться дополнительной информацией, а именно:

- дата и время проведения настройки,
- тип и номер ультразвукового преобразователя,
- методика контроля и нормы разбраковки изделий,
- тип изделия и его характерные размеры.

Следует помнить, что настройка, однажды установленная, сохраненная и впоследствии восстановленная в приборе, соответствует действительности только при соблюдении следующих условий:

- при использовании того же самого ультразвукового преобразователя,
- при контроле изделия такого же типа и типоразмера,
- при контроле по той же самой методике или при использовании таких же норм браковки.

Ультразвуковые преобразователи со временем истираются, их характеристики постепенно меняются. Естественно, эти изменения должны отслеживаться в настройке прибора.

9.5 Проведение ультразвукового контроля изделий

Дефектоскоп УД9812 предназначен для выполнения ручного ультразвукового контроля изделий. Контроль осуществляется пьезоэлектрическими преобразователями.

Все операции неразрушающего контроля выполняются в режиме «УЗ контроль».

9.5.1 Операции неразрушающего контроля

Процесс неразрушающего контроля изделий состоит из нескольких этапов, перечисленных ниже:

- сканирование,
- измерение информативных параметров дефектов,
- принятие решения о годности изделия,
- технологическое испытание аппаратуры.

Естественно, перед выполнением контроля проводится полная настройка прибора.

Итак, первый этап контроля – сканирование. Изделие подготавливается для проведения ультразвукового контроля, производится зачистка поверхностей ввода. Шероховатость поверхности должна быть не более Rz40. Поверхность ввода смачивают контактной жидкостью, затем ставят преобразователь на поверхность, и перемещают его с таким расчетом, чтобы прозвучить необходимый объем изделия. Как правило, шаг сканирования выбирают равным ½ размера пьезоэлемента в ПЭП. Рекомендуемая скорость ручного сканирования не более 100 мм/с. При такой скорости перемещения ПЭП шаг прозвучивания изделия 2мм (тактовая частота прибора 50 Гц).

Здесь хорошо помогает настройка поискового уровня АСД#1 и, связанная с ним, звуковая сигнализация. Если появляется эхосигнал, попадающий в зону контроля АСД#1 и превышающий по амплитуде поисковый уровень, прибор выдает звуковой сигнал. В противном случае, чтобы обнаружить сигнал, дефектоскопист вынужден постоянно смотреть на экран прибора.

При обнаружении эхосигнала, превышающего поисковый уровень АСД#1, сканирование прекращают. Затем находят положение преобразователя, в котором наблюдается максимум эхосигнала. Проводят проверку, существенный ли это дефект. Обычно для этой цели эхосигнал сравнивают с уровнем фиксации АСД#1. Если эхосигнал не превышает уровень фиксации АСД#1, дефект не существенный, продолжают сканирование.

Если эхосигнал превышает уровень фиксации – дефект существенный, переходят ко второму этапу контроля – проводят измерение характеристик дефекта. Во всех случаях эту информацию указывают в заключениях по результатам контроля. Согласно ГОСТ 14782-86 основными измеряемыми характеристиками выявляемого дефекта являются:

- амплитуда эхосигнала,
- координаты дефекта Н или Х,Ү,
- положение преобразователя на изделии,
- условные размеры дефекта (условная ширина, условная высота и условная протяженность).
- условное расстояние между дефектами (этот параметр крайне редко используется в методиках контроля),
- количество дефектов на определенной длине изделия.

Ультразвуковой дефектоскоп УД9812 позволяет определить все выше перечисленные, характеристики дефектов.

Третий этап контроля, принятие решения о годности изделия, выполняют после полного сканирования изделия и определения характеристик всех обнаруженных дефектов. Решение о годности принимается на основании критериев браковки, установленных в инструкциях.

В методиках ультразвукового контроля главным измеряемым параметром является амплитуда эхосигнала от дефекта. Производится сравнение эхосигнала от дефекта с браковочным уровнем АСД#1. Если амплитуда эхосигнала от дефекта больше браковочного уровня – принимается решение о недопустимости дефекта, изделие бракуется.

Размеры дефекта оценивают в ультразвуковом контроле с помощью условных размеров. Сравнивают условный размер дефекта с максимально допустимым. Если измеренное значение больше, чем максимально допустимое – изделие бракуют. В основном, в методиках контроля определяется условная протяженность дефекта.

Кроме того, в методиках ультразвукового контроля используют дополнительные критерии браковки, такие как суммарная условная протяженность дефектов, количество допустимых по амплитуде дефектов на некоторую длину изделия и т.д.

Четвертый этап, технологическое испытание аппаратуры, проводится в процессе контроля. В сущности технологическое испытание – это проверка работоспособности прибора, проверка его настройки. Возможны ситуации, когда параметры аппаратуры меняются, например, при резких изменениях температуры окружающей среды, из-за истирания ультразвукового преобразователя, отказы кабеля и прочее. Периодичность и объем технологических испытаний должны оговариваться в инструкциях.

Рекомендуется в качестве технологического испытания проводить проверку настройки прибора не менее двух раз в течение рабочего дня. В первую очередь необходимо проверить и, если нужно, скорректировать, браковочный уровень АСД, положение строба АСД, настройку глубиномера и ВРЧ. Другие параметры прибора УД9812 проверяют по необходимости.

Сосредоточим наше внимание на работе с прибором при определении параметров дефектов, сохранении и просмотре результатов контроля.

9.5.2 Измерение амплитуды эхосигнала и координат дефекта

Измерение параметров эхосигнала производится с помощью селектора. Меню «Селектор» совершенно идентично в режимах «Настройка», «УЗ контроль» и в режиме просмотра файлов с данными контроля.

Большинство методик ультразвукового контроля требует измерения амплитуды эхосигнала от дефекта относительно браковочного уровня (АСД#1) и координат дефекта (Х,Ү или Н). Параметры эхосигналов, измеряемые селектором, устанавливаются в процессе настройки прибора (см. П9.4.3.).

Напомним, что для получения правильных результатов измерений предварительно должна быть настроена система АСД (П9.4.10. или П9.4.11.), глубиномер (П9.4.4.) и, если используется, система ВРЧ (П9.4.12.).

В режиме «УЗ контроль» селектор вызывается нажатием на кнопку F2. Элемент меню «СЕЛЕКТОР» в окне управления сверху справа на экране предназначен для перемещения символа селектора (буква **S** в рамке). Захватите с помощью селектора эхосигнал от дефекта, как показано на Рис. 9.5.2.1. Результаты измерений немедленно выводятся в окне сверху слева экрана.

Селектор может работать совместно с меню «Стоп», тогда он производит измерение параметров замороженных эхосигналов. Последовательность вызова меню «Стоп» кнопкой F4 и меню «Селектор» кнопкой F2 не имеет значения. Фиксация эхосигналов на развертке прибора полезна при прозвучивании изделий в вертикальном или потолочном положении

Рис. 9.5.2.1. Измерение параметров эхосигнала от дефекта. Контроль сварного соединения толщиной 34 мм. Преобразователь П121-2,5-50°-Ø14.

9.5.3 Качественное сравнение эхосигналов. Функция «Запомнить»

Прибор УД9812 предлагает ряд сервисных операций с ультразвуковыми сигналами. В режиме «УЗ контроль» данные операции сгруппированы в меню «Функции». Вызов меню осуществляется кнопкой F3.

Рис. 9.5.3.1. Распознавание провисания в корне сварного шва с помощью функции «Запомнить». Толщина сварного шва 28мм. Преобразователь П121-2,5-50°-Ø14.

А) Прозвучивание зарубки в СОП. Б) Прозвучивание провисания в корне сварного шва.
 В) Вид эхосигналов на развертке прибора.

Функция «Запомнить» активируется кнопкой ... В этот момент действующая развертка ультразвуковых сигналов запоминается и выводится на экран. В отличие от меню «Стоп»

текущие ультразвуковые сигналы продолжают отображаться на экране. Таким образом, на экране наблюдаются две развертки. Одна статическая, другая динамическая. Функция «Запомнить» используется для качественного сравнения сигналов по амплитуде и задержке.

Отметим, что статическая развертка эхосигналов сбрасывается при изменении усиления прибора или при изменении развертки (ширины и сдвига), другими словами, если были сделаны какие-либо корректировки в меню «Экран». Такой подход оправдан, поскольку после изменения параметров экрана статическая развертка уже не соответствует динамической.

Типичный пример применения функции «Запомнить» - распознавание провисаний в корне сварного соединения (Рис. 9.5.3.1.). Проблема в том, что провисание формирует эхосигнал, попадающий в строб АСД#1. Провисание не является дефектом, так как не уменьшает прочность сварного соединения, но по эхосигналу от него сварной шов может быть ложно забракован.

Для распознавания эхосигналов от провисаний используют следующий тест. Находят максимум эхосигнала от зарубки в СОП и фиксируют этот эхосигнал с помощью функции «Запомнить». Затем прозвучивают корень сварного шва и находят максимальный эхосигнал предположительно от провисания. Если эхосигнал в сварном шве располагается несколько дальше эхосигнала от зарубки – это провисание (Рис. 9.5.3.1.), если же немного ближе, то имеется надкорневой дефект. Обратите внимание, что длина пробега волн от ПЭП до отражающей поверхности провисания больше, чем при прозвучивании зарубки в СОП. Ясно, что толщина СОП и толщина деталей сварного шва должны быть равны.

Тест на распознавание провисаний хорошо работает, если преобразователь имеет узкую диаграмму направленности ультразвукового поля.

9.5.4 Определение условных размеров дефекта

Выделяют три условных размера дефекта – условная ширина ΔХ, условная высота ΔΥ и условная протяженность ΔL. Прибор УД9812 имеет автоматизированные функции «Пробег» и «Анализ» предназначенные для определения условной ширины и условной высоты дефекта. Условная протяженность дефекта определяется традиционным способом.

Измерение ΔX и ΔY производится следующим образом. Вначале на экране прибора формируют огибающую пробега эхосигнала, затем производят анализ огибающей – прибор автоматически измеряет условную ширину и условную высоту дефекта. Рассмотрим подробней работу с прибором.

Обнаружив эхосигнал от дефекта (Рис. 9.5.4.1.А) выбирают главное меню «Функции» (кнопка F3). В управляющем окне устанавливают маркер на элемент меню «Пробег» и нажимают кнопку \downarrow . На экране прибора появляется символ селектора (Рис. 9.5.4.1.Б). С помощью кнопок \leftarrow , \rightarrow , \uparrow , \downarrow регулируют положение селектора так, чтобы захватывался исследуемый эхосигнал. Затем сканируют дефект (Рис. 9.5.4.1.А). На экране прибора постепенно формируется огибающая пробега эхосигнала (Рис. 9.5.4.1.Б). Следите за тем, чтобы огибающая пробега представляла собой гладкую кривую без резких выбросов.

По окончании сканирования выходят из режима формирования огибающей, нажимают кнопку . Огибающая пробега фиксируется на экране. Пропадает символ селектора. Развертка эхосигналов продолжает выводиться на экран.

Если качество огибающей неудовлетворительное, процедуру сканирования можно повторить, выбрав снова элемент меню «Пробег». В момент выбора меню «Пробег» кривая огибающей пробега сбрасывается. Прибор ожидает формирования новой кривой.

После формирования огибающей пробега переходят к ее анализу. Устанавливают маркер на элемент меню «Анализ» (Рис. 9.5.4.1.В). Развертка эхосигналов пропадает с экрана, остается только огибающая пробега. На экране отображается маркер пробега. Его положение

устанавливают кнопками *с*, *э*. В верхней части экрана отображается окно с параметрами огибающей.

В) Установка маркера пробега.

 Γ) Измерение условной ширины ΔX и условной высоты дефекта ΔY .

А) Пик огибающей пробега не обнаружен. Б) Найден пик огибающей пробега и проведен анализ огибающей.

Прибор автоматически анализирует кривую справа и слева от маркера пробега. С помощью маркера пробега необходимо указать прибору какой пик на графике нужно проанализировать.

Вначале прибор производит поиск пика огибающей. Если пик обнаружен, меняется внешний вид маркера пробега (Рис. 9.5.4.2.). На экран выводится метка пика – цифра 1 в рамке (Рис. 9.5.4.1.В). Далее прибор определяет ширину огибающей пробега на уровне –6 дБ от максимума. На экране данный уровень отмечается мигающей линией. Ширина огибающей пробега эхосигнала, выраженная в координатах X и Y, как раз и представляет собой условную ширину ΔX и условную высоту ΔY дефекта.

Если элемент меню «Анализ» не выбран, черный фон маркера, то в окне параметров выводятся характеристики огибающей в точке маркера пробега (красная точка на Рис. 9.5.4.1.В). Все характеристики имеют индекс «m», т.е. параметры маркера пробега: Ат – амплитуда огибающей в децибелах по разметке экрана, Тт – время задержки, Хт и Ym – координаты в точке маркера пробега, найденные согласно действующей настройки глубиномера.

Рис. 9.5.4.3. Определение условной протяженности дефекта. Сварной шов толщиной 10мм. Преобразователь П121-5,0-70°-Ø8. А) Прозвучивание сварного шва. Вид сверху.

- Б) Прозвучивание сварного шва. Вид в сечении.
- В) Максимальный эхосигнал от непровара в корне шва. Положение ПЭП 1.

Г) Вид эхосигнала в крайних положениях ПЭП 2 и 3.

Если элемент меню «Анализ» выбран (Рис.9.5.4.1.Г), белый фон маркера, то в окне параметров выводится амплитуда пика огибающей А1 и ширина пика, измеренная в

микросекундах - ΔT и условные размеры ΔX, ΔY в миллиметрах. Причем условные размеры дефекта определяются согласно действующей настройки глубиномера. На Рис. 9.5.4.1.Г точки, в которых определяются параметры кривой, отмечены красным цветом.

Условную протяженность определяют на некотором уровне амплитуды эхосигнала. Часто, для этой цели используют уровень фиксации АСД#1, который установлен на 6дБ ниже браковочного уровня.

Измерение проводят следующим образом (Рис. 9.5.4.3.). Перемещают преобразователь вдоль сварного шва и находят два положения ПЭП (2 и 3), в которых амплитуда эхосигнала уменьшается до уровня фиксации АСД#1. Условную протяженность ΔL – расстояние между положениями ПЭП 2 и 3 – измеряют с помощью линейки.

Существует другой способ определения уловной протяженности, в котором уровень фиксации ПЭП отсчитывают от максимального эхосигнала от дефекта. Находят максимальный эхосигнал от дефекта – положение ПЭП 1. По экрану прибора отмечают уровень фиксации на 6 дБ меньше максимальной амплитуды и, далее, определяют крайние положения ПЭП 2 и 3, в которых амплитуда эхосигнала находится на этом уровне фиксации. Линейкой измеряют условную протяженность ΔL .

Представленные два способа измерения условной протяженности дефекта дают различные численные значения. Следует быть внимательным к тому, каким способом нужно измерять условную протяженность. Эти детали должны оговариваться в инструкциях неразрушающего контроля.

9.5.5 Запоминание результатов контроля

В режиме «УЗ контроль» переход к записи данных производится при нажатии кнопки «Данные». Прибор автоматически выбирает меню «СТОП», развертка эхосигналов замораживается. На экран прибора выводится окно записи данных Рис.9.5.5.1. Если нужно отменить запись, нажмите кнопку «Данные» еще раз или нажмите кнопку «УЗ контроль». Окно «Запись данных в ФАЙЛ ХХХ» пропадает. Для продолжения контроля отмените выбор меню «СТОП».

Рис. 9.5.5.1. Меню записи данных ультразвукового контроля.

Если все файлы УЗ контроля записаны в энергонезависимую память, то при нажатии кнопки «Данные» выводится окно «Память данных УЗК ЗАПОЛНЕНА! ...».

Перед записью данных в файл нужно ввести комментарии и создать голосовое сообщение.

Ввод текстовой информации. Установите маркер на одну из строк комментарий и нажмите кнопку \downarrow . Тогда в редактируемой строке появляется мигающий курсор и выводится окно с таблицей символов (Рис. 9.5.5.2.А). Здесь кнопками $\uparrow, \leftarrow, \rightarrow, \downarrow$ указывается символ в таблице, кнопкой \downarrow производится передача этого символа в строку. Символ вводится в строку в позиции курсора. При этом курсор переходит в следующую позицию.

Окно с таблицей символов использует кнопки F1, F2, F4. В нижней части окна есть подсказка работы кнопок. Кнопками F1, F2 производится перемещение курсора в редактируемой строке. При нажатии кнопки F4 окно с таблицей символов закрывается, прибор выходит из режима редактирования строки.

B)

Рис. 9.5.5.2. Ввод дополнительной информации.
А) Запись текста комментарий.
Б) Ввод голосового сообщения.
В) Прослушивание голосового сообщения.

Голосовое сообщение начинает записываться при выборе элемента меню «Сказать» (Рис. 9.5.5.2.Б). Установите маркер на элемент меню «Сказать» и нажмите кнопку ... Тогда включается запись звуковых сигналов с микрофона, встроенного в прибор, а на экране отображается окно процесса записи с заголовком «ГОВОРИТЕ!». Данное окно использует

кнопки ↑, ↓ для регулировки чувствительности микрофона. Окно содержит строку подсказки «Усиление ↑↓» и строку коэффициента передачи усилителя (дБ). В нижней строке окна выводится текущее время записи голосового сообщения. Имеется также индикатор интенсивности звукового сигнала.

Если в процессе записи голосового сообщения нажать кнопку , то запись прекращается, окно «ГОВОРИТЕ!» пропадает. Кроме того, запись прекращается автоматически по истечении времени 31,7 секунд.

Следует отметить, что голосовое сообщение записывается прямо в файл в энергонезависимой памяти. Поэтому, если создать голосовое сообщение, но не сохранять данные в файл, то в дальнейшем при просмотре данных контроля этот файл будет отображаться как не содержащий информации. А голосовое сообщение можно будет прослушать.

Элемент меню «Прослушать» используется для проверки качества созданного голосового сообщения. Установите на него маркер и нажмите кнопку ... Тотчас начинается вывод звуковых данных на динамик, установленный в приборе, и на экране отображается окно с заголовком «СЛУШАЙТЕ!» (Рис. 9.5.5.2.В). Во время отображения окна кнопки ↑, ↓ управляют громкостью. Во второй строке окна отображается подсказка «Громкость ↑, ↓». В третьей строке показан коэффициент передачи усилителя воспроизведения (дБ). В нижней строке отображается текущее время голосового сообщения (с). В правой части окна имеется индикатор интенсивности голосового сигнала. По окончании проигрывания сообщения динамик отключается и окно «СЛУШАЙТЕ!» пропадает. Можно прекратить воспроизведение раньше, нажав на кнопку ... Повторное нажатие на кнопку ... инициирует воспроизведение с самого начала.

Если возникла необходимость изменить голосовое сообщение, его можно создать заново. Для этого выберите элемент меню «Сказать» и снова скажите сообщение.

Запись в файл данных ультразвукового контроля осуществляется выбором элемента меню «Сохранить в файл». Данные, подготовленные при вызове окна «Запись данных в ФАЙЛ XXX» и установленные в его элементах меню – записываются в файл. Если запись данных в энергонезависимую память прошла без ошибок, на экран выводится сообщение «Сохранение данных ОК», в противном случае выводится информация об ошибках.

9.5.6 Просмотр файлов ультразвукового контроля

Переход к просмотру результатов ультразвукового контроля осуществляется из окна сохранения данных «Запись данных в ФАЙЛ ХХХ» после выбора элемента меню «Переход в просмотр». Вид экрана в этом режиме показан на Рис. 9.5.6.1.

В режиме просмотра прибор выводит на экран данные из файлов. Причем из каждого файла загружается настройка прибора. Отображение сигналов и измерение их параметров производится согласно этой настройке, т.е. воспроизводятся все условия, которые были в момент записи данных. При переходе в режим просмотра выводится информация из последнего файла, записанного в энергонезависимую память.

Номер файла, а также дата и время его записи всегда отображается в окне расположенном в левом верхнем углу экрана (см. Рис. 9.5.6.1.). Если в файле нет данных, поле даты заполняется символом «#».

В режиме просмотра есть главное меню, организованное в виде окон в нижней части экрана. Вызов элементов главного меню производится при нажатии кнопок F1 – F4, расположенных под окнами. Главное меню содержит следующие элементы:

- 1. «файл XXX» просмотр информации в файле.
- 2. «Карта памяти» обзор заполнения памяти, стирание данных.
- 3. «Селектор» измерение параметров ультразвуковых сигналов.

4. «Функции» - просмотр сигналов, полученных в аналогичном меню «Функции» в режиме «УЗ контроль».

Если файл не содержит информации, элементы главного меню «Селектор» и «Функции» блокируются. Их изображение не выводится на экран. Рассмотрим работу элементов главного меню.

Рис. 9.5.6.1. Вид экрана прибора в режиме просмотра данных ультразвукового контроля. А). Изображение эхосигналов из файла 003. Б). В файле 166 нет данных.

9.5.7 Меню «Файл XXX»

Данное меню активизируется после нажатия на кнопку F1. На экране прибора в верхнем правом углу появляется окно с заголовком «ФАЙЛ ХХХ» - Рис. 9.5.7.1.

Элемент меню «ФАЙЛ XXX» предназначен для указания номера файла. Установите на него маркер. При нажатии кнопок ←, → производится переход к следующему или к предыдущему файлу. Номер файла изменяется на единицу. Содержимое файла автоматически выводится на экран.

Если установить маркер на элемент меню «ФАЙЛ XXX» и нажать кнопку \downarrow , прибор устанавливает режим посимвольного редактирования номера файла. Поле маркера становится белым. Появляется курсор, отмечающий редактируемый символ в номере файла. Теперь кнопками \leftarrow , \rightarrow изменяется позиция курсора, а кнопками \uparrow , \downarrow редактируется номер в данной позиции. При повторном нажатии кнопки \downarrow режим посимвольного редактирования отменяется. Поле маркера становится черным.

Элемент меню «Просмотр» предназначен для вывода сопутствующей информации. Установите маркер на данный элемент меню и нажмите кнопку . Поле маркера становится белым. Появляется курсор под надписью «Просмотр». Одновременно на экране появляется окно, в котором отображается номер файла, дата и время, информация об ультразвуковом преобразователе и две строки комментарий. Повторное нажатие на кнопку . отменяет выбор элемента меню, окно пропадает.

Элемент меню «Просмотр» имеет режим автоматического просмотра информации. Для выбора этого режима установите маркер на элемент меню «Просмотр» и кнопками \leftarrow , \rightarrow установите надпись «Просмотр АВТО». Тогда окно с информацией остается на экране. При изменении номера файла строки в окне автоматически обновляются. Если указать «Просмотр НЕТ», режим автоматического просмотра информации отменяется.

Аналогичным образом работает элемент меню «Слушать». При его выборе кнопкой \downarrow на динамик воспроизводится голосовое сообщение из данного файла. Повторное нажатие кнопки \downarrow заканчивает воспроизведение. Во время воспроизведения голоса на экран выводится окно, которое показывает процесс воспроизведения (см. Рис. 9.5.7.1.). Здесь кнопками \uparrow , \downarrow регулируется громкость. По окончании прослушивания (через 31,7 с) данное окно пропадает.

Элемент меню «Слушать» имеет режим автоматического прослушивания голосового сообщения. Установите маркер на данный элемент меню. Кнопками —, — установите надпись «Слушать ABTO». Тогда, при изменении номера файла, прослушивание голосового сообщения происходит автоматически. Данный режим отменяется установкой «Слушать HET».

Рис. 9.5.7.1. Режим просмотра данных ультразвукового контроля. Меню «файл XXX» при выборе режима «АВТО» в элементах меню «Просмотр» и «Слушать».

На рисунке 9.5.7.1. показан экран дефектоскопа в режиме просмотра данных ультразвукового контроля. Здесь выбран элемент главного меню «файл 003» и установлены режимы авто- просмотра и авто- прослушивания.

В меню «ФАЙЛ XXX» имеется возможность изменения голосового сообщения. Для этой цели служит элемент меню «Сказать снова». При его выборе отображается окно с заголовком «ГОВОРИТЕ!» и производится запись голосового сообщения. Процесс записи точно такой же, как в меню сохранения данных настройки или данных ультразвукового контроля. Следует напомнить, что новое голосовое сообщение записывается на место старого в энергонезависимой памяти. Следовательно, старое голосовое сообщение в данном файле пропадает.

9.5.8 Меню «Карта памяти»

Когда в приборе записано большое количество файлов с результатами контроля, важно охватить взглядом проделанную работу. Также должна быть возможность быстрого просмотра и выбора файла. Меню «Карта памяти» предназначено для таких операций. Меню вызывается с помощью кнопки F2. На экране прибора появляется окно с заголовком «Карта файлов УЗ контроля» (Рис. 9.5.8.1.).

Здесь файлы данных ультразвукового контроля изображены в виде ячеек, расположенных в шахматном порядке. Нумерация файлов установлена слева – направо и сверху – вниз, т.е. файл с номером 001 изображается ячейкой в верхнем левом углу, а файл 216 – в нижнем правом углу. Если файл содержит данные ультразвукового контроля, ячейка отмечается символом «I» на черном фоне, если нет – ячейка имеет белый фон.

Рис. 9.5.8.1. Меню «Карта памяти». Режим просмотра файлов ультразвукового контроля.

В окне «Карта файлов УЗ контроля» есть маркер, который перемещается по ячейкам и по элементам меню (снизу). Маркер управляется кнопками $\uparrow, \leftarrow, \rightarrow, \downarrow$. При перемещении маркера по ячейкам файлов, информация из файла загружается автоматически, меняется изображение эхосигналов на заднем фоне экрана. Текущий номер файла и дата записи отображается в окне в верхней левой части экрана (см. Рис. 9.5.8.1.).

Если выбрать ячейку, нажав на кнопку ↓, на экране появляются два окна. Первое окно отображает процесс воспроизведения голосового сообщения. Одновременно голосовое сообщение выдается на динамик. По окончании воспроизведения голоса окно пропадает. Второе окно показывает общую информацию из файла – номер файла, дату записи, информацию о преобразователе и две строки комментарий. Повторное нажатие на кнопку ↓ закрывает эти окна. Вывод голосового сообщения прекращается.

Рис. 9.5.8.2. Процесс стирания памяти данных ультразвукового контроля.

В данном меню организован режим автоматического прослушивания голосового сообщения и автоматического просмотра информации. Здесь постоянно отображаются дополнительные окна, о которых говорилось выше. Теперь при перемещении маркера по карте памяти, автоматически обновляется информация в окнах и воспроизводятся голосовые сообщения из файлов.

Режим устанавливается в элементах меню «Авто-просмотр информации» и «Авто-прослушивание». Оба элемента меню имеют поле «ДА/НЕТ». Если указать «ДА», устанавливается соответствующий режим авто...

Последний элемент меню «СТЕРЕТЬ ВСЕ!» предназначен для очистки файлов данных ультразвукового контроля. Выбор этого элемента с помощью кнопки ↓ открывает окно стирания файлов (Рис. 9.5.8.2.).

Окно стирания файлов содержит два элемента меню «СТИРАНИЕ» и «Выход». В верхней части окна изображен индикатор процесса стирания. При вызове окна маркер всегда установлен на элемент меню «Выход».

Стирание файлов производится следующим образом. Установите маркер на элемент меню «СТИРАНИЕ» и нажмите кнопку ... С этого момента начинается процесс стирания файлов. По окончании стирания всех файлов, если не было ошибок, на экран выводится сообщение «Данных УЗК больше НЕТ!». Если обнаружены ошибки стирания, на экран выводится информация об ошибках. В заключение прибор обновляет окно карты памяти. Теперь все ячейки файлов имеют белый фон. В них нет информации..

Установите маркер на элемент меню «Выход» и нажмите кнопку . Окно стирания файлов закрывается. Управление от кнопок передается окну «Карта файлов УЗ контроля».

ВНИМАНИЕ! Во время стирания файлов запрещается выключать прибор, т.к. это может привести к выходу из строя некоторых блоков энергонезависимой памяти.

9.5.9 Меню «Селектор»

Работа меню «Селектор» в режиме просмотра файлов ультразвукового контроля ничем не отличается от такого же меню, реализованного в режимах «Настройка» и «УЗ контроль».

Нужно помнить, что при сохранении данных ультразвукового контроля в каждый файл записывается настройка прибора. Измерение параметров ультразвуковых сигналов с помощью селектора производится согласно настройке, загруженной из данного файла. Результаты измерений всегда соответствуют тем условиям, которые были при сохранении файла. Это касается измерения задержки **T**, координат дефектов X, Y, H и амплитуд сигналов, найденных относительно стробов АСД.

9.5.10 Меню «Функции»

Меню «Функции» предназначено для просмотра сигналов, созданных в таком же меню в режиме «УЗ контроль». Все операции данного меню повторяют работу меню «Функции» режима «УЗ контроль». Здесь меню «Функции» производит только отображение сигналов из файла и измерение их параметров.

Меню «Функции» содержит два элемента «Сигнал из меню «Запомнить»» и «Пробег «Анализ»».

При установке маркера на элемент меню «Сигнал из меню «Запомнить»» на экран прибора выводится две развертки. На одной из них изображаются основные сигналы, на другой – сигналы, созданные с помощью функции «Запомнить» в режиме ультразвукового контроля. Все сигналы считываются из файла.

Установка маркера на второй элемент меню «Пробег «Анализ»» активирует изображение огибающей пробега на экране прибора. На развертке появляется маркер пробега. Теперь с помощью кнопок ←, → устанавливается положение маркера пробега на развертке.

Если элемент меню «Пробег «Анализ»» не выбран, маркер в окне имеет черный фон, то в дочернем окне отображаются параметры маркера пробега. Здесь выводятся параметры точки, на которую указывает маркер пробега: Ат – амплитуда огибающей, Тт – время задержки, Хт – координата Х, Ym – координата Y. Амплитуда огибающей и координаты маркера пробега рассчитываются в соответствии с настройкой прибора, загруженной из файла.

Если элемент меню «Пробег «Анализ»» выбран (белый фон), производится анализ огибающей пробега в районе точки маркера. Находится максимум пика огибающей, затем на уровне –6 дБ от него определяется ширина огибающей и рассчитываются параметры данного пика: А1 – амплитуда пика, ΔT – ширина пика (мкс), ΔX – условная ширина дефекта (мм), ΔY – условная высота дефекта (мм). Причем расчет условных размеров проводится в соответствии с настройкой глубиномера, загруженной из файла. Если алгоритм анализа завершился успешно (пик найден и все расчеты выполнены), то появляется дочернее окно измерений условных размеров, в которое выводятся результаты обработки пика огибающей.

9.6 Измерение акустических характеристик материалов. Аттестация образцов.

Ультразвуковой дефектоскоп УД9812 разработан с учетом решения метрологических и исследовательских задач. Прибор снабжен калиброванным аттенюатором и прецизионным измерителем задержки сигналов. Это позволяет использовать его для аттестации образцов по времени прохождения ультразвуковых волн и для измерения физических характеристик материалов – затухания и скоростей звука.

9.6.1 Прецизионные измерения времени прохождения ультразвуковых сигналов в СО

Часто встречается задача точного измерения времени прохождения волн в образце. Это аттестация мер эквивалентной ультразвуковой толщины (комплект образцов КУСОТ-180), комплектов стандартных образцов типа КМТ и КМД, стандартных образцов по ГОСТ-14782-86 СО-2, СО-3.

Рассмотрим общий подход к измерению времени прохождения волн. Для прозвучивания образца используются прямые совмещенные преобразователи. Причем могут применятся преобразователи, излучающие как продольные, так и поперечные волны. Схема прозвучивания СО и вид эхосигналов представлены на Рис. 9.6.1.1.

Рис. 9.6.1.1. Прозвучивание стандартного образца.

 А) Схема прозвучивания. СО- стандартный образец, ПЭП- пьезоэлектрический преобразователь. Н- размер образца в направлении прозвучивания.
 Б). Вид эхосигналов ультразвукового преобразователя. ЗИ- зондирующий импульс. При прозвучивании стандартного образца прямым ультразвуковым преобразователем формируется серия донных эхосигналов. Ультразвуковой зондирующий импульс распространяется вдоль образца и последовательно отражается от нижней и верхней границ СО. Главной аттестуемой характеристикой СО является время прохождения ультразвуковых сигналов Тсо, которое определяется как разность времени задержки первого (t1) и второго (t2) донных эхосигналов

$$Tco = t2 - t1.$$

Время Тсо соответствует длине пробега волн по образцу от верхней его грани до нижней и обратно, т.е. общая длина пробега волн составляет 2*Н. Поскольку время пробега волн Тсо и длина пробега 2*Н известны, то образец может быть аттестован по скорости ультразвуковых волн С. Определение скорости проводится по элементарной формуле

$$C = 2*H/Tco.$$

Отметим, что если преобразователь излучает продольные волны, измеряется время прохождения продольных волн и их скорость. Если же преобразователь излучает поперечные волны, измеряется время прохождения и скорость поперечных волн.

При измерении времени Тсо с высокой точностью начинают сказываться интерференционные искажения эхосигналов. Принцип формирования искажений демонстрирует Рис.9.6.1.2. Рассмотрим процесс излучения, отражения и приема ультразвуковых волн.

Ультразвуковой зондирующий импульс возбуждается на поверхности прилегания преобразователя с СО. На Рис.9.6.1.2. поверхность обозначена Sпэп. Каждый элемент поверхности, например T, излучает ультразвуковые колебания с круговой диаграммой направленности. Общее поле излучения в пространстве формируется путем сложения волн от всех элементарных излучателей (интерференция волн).

Рис. 9.6.1.2. Интерференция волн в стандартном образце.

Волны распространяются по образцу, достигают противоположной поверхности и отражаются от нее в области Sд. Согласно принципа Гюйгенса, каждый элемент отражающей поверхности является вторичным излучателем ультразвуковых волн. На Рис.9.6.1.2. отражающий элемент обозначен буквой «О». Общее поле отраженных волн аналогично образуется за счет суммирования полей вторичных излучателей (интерференция).

Теперь волны достигают поверхности преобразователя, формируется донный эхосигнал. Он представляет собой сумму сигналов от элементов поверхности пьезоэлемента, точки R. Таким образом, эхосигнал в CO образуется посредством суммирования сигналов от всех излучающих T, отражающих O и принимающих R элементов поверхностей. На Рис.9.6.1.2. хорошо видно, что путь ультразвуковых волн от элементарного излучателя до отражателя и обратно к приемнику изменяется в зависимости от их геометрического расположения. Поэтому донный эхосигнал есть сумма сигналов элементов излучения с различными задержками. Математическое описание явления интерференции волн производится с помощью интеграла Френеля.

Искажения эхосигналов, связанные с интерференцией волн, создают погрешность в определении времени Тсо. Дело осложняется тем, что интерференционную погрешность задержки эхосигнала невозможно определить в эксперименте. Можно только принять меры к уменьшению погрешности, а именно предъявить требования к параметрам преобразователя.

Для определения времени задержки эхосигналов используется способ измерения по переходу эхосигнала через ноль. Данный способ измерения обладает высокой стабильностью и высокой точностью, т.к. положение точки перехода сигнала через ноль не зависит от амплитуды сигнала.

Выше приведенная методика измерения задержки эхосигналов учитывает не все погрешности. Существует еще разброс размера СО в пределах поверхности ввода ультразвуковых волн и погрешность, связанная с качеством акустического контакта ультразвукового преобразователя с поверхностью ввода. Последняя погрешность зависит от шероховатости поверхности СО и от толщины слоя контактной жидкости между преобразователем и поверхностью СО.

Определение этих погрешностей производится посредством многократных измерений времени прохождения ультразвуковых волн в различных точках поверхности ввода СО. Рекомендуется проводить не менее 8 измерений. Далее проводится статистическая обработка результатов измерений. Определяется математическое ожидание времени, дисперсия и погрешность в доверительном интервале 0,95.

Общая погрешность аттестованного значения времени пробега волн представляет собой сумму погрешности аппаратурной и погрешности, связанной с геометрическими размерами СО.

9.6.2 Определение затухания волн в материале

Применение системы временной регулировки чувствительности в стиле «Teop. Pacчет» требует ввода коэффициента затухания поперечных волн в материале. Актуальна также задача аттестации стандартных образцов по затуханию волн. Кроме того, коэффициент затухания является физическим параметром материала, характеризующим его состояние. Изучение коэффициента затухания представляет самостоятельный интерес.

В инструкциях ультразвукового контроля изделий, а также в других методических документах крайне редко приводятся данные о затухании волн в металле. В связи с этим рассмотрим методику определения коэффициента затухания ультразвуковых волн.

Сделаем некоторые предварительные замечания. В общем случае затухание волн можно определить по уменьшению амплитуды ультразвукового сигнала, прошедшего некоторое расстояние в материале. Используем эхометод для этой цели. Схемы прозвучивания образцов показаны на Рис. 9.6.2.1. Затухание волн определяется по соотношению амплитуд эхосигналов от одинаковых отражателей, расположенных на различном расстоянии от ПЭП. Однако, уменьшение амплитуды эхосигнала от отражателя с увеличением расстояния до него характеризуется тремя эффектами:

- Расхождение ультразвукового пучка. В дальней зоне ультразвукового поля ПЭП выполняются теоретические зависимости изменения амплитуды эхосигнала с расстоянием (см. П4.9.).
- Затухание волн, связанное с поглощением и рассеянием. Измеряется как уменьшение амплитуды сигнала в децибелах, отнесенное к длине пробега волн, размерность [дБ/м].
- Квази-искривление акустической оси преобразователя. Характерно для наклонных ПЭП (подробнее см. учебники). Отметим, что указанный эффект слабо проявляется для ПЭП с узкими диаграммами направленности ультразвукового поля. Именно такие преобразователи и используют для определения затухания волн.

Видно, что невозможно определить затухание волн не учитывая расхождения ультразвукового поля ПЭП и не принимая меры к уменьшению эффекта квази-искривления акустической оси.

Поступают следующим образом. Изготавливают образцы достаточно больших размеров для того, чтобы увеличить влияние затухания на амплитуду эхосигнала. Выбирают ультразвуковой преобразователь обеспечивающий прозвучивание отражающих поверхностей образцов в дальней зоне ультразвукового поля. Тогда известен закон уменьшения амплитуды эхосигнала, связанной с расхождением ультразвукового поля ПЭП. Для бесконечных отражателей (Рис. 9.6.2.1.) имеет место зависимость A~1/R, где: R – расстояние от ПЭП до отражателя.

R1 – расстояние от ПЭП до дальнего отражателя, R2 – расстояние от ПЭП до дальнего отражателя,

А) Прозвучивание образца прямым ПЭП. Б) Прозвучивание образца наклонным ПЭП.

В схемах прозвучивания Рис. 9.6.2.1. измеряют амплитуду эхосигнала A1 от отражателя, расположенного на расстоянии R1, и амплитуду эхосигнала A2 от отражателя на расстоянии R2. Величины A1 [дБ] и A2 [дБ] измеряют с помощью селектора дефектоскопа. Режим измерения амплитуды – дБ относительно 0 дБ усиления (см. подробней П4.8.). Коэффициент затухания вычисляют по формуле

K $[\mu E/M] = [(A2 - A1) - 20*Log(R2/R1)] / [2*(R2 - R1)].$

Проанализируем данное выражение. Разность амплитуд в числителе (А2 – А1) есть отношение амплитуд эхосигналов в децибелах. Из него вычитается ослабление сигнала,

связанное с расхождением ультразвукового поля – 20*Log (R2/R1). Полученная величина ослабления характеризует только затухание волн. Остается провести нормирование на длину пробега волн 2*(R2 – R1).

Рис. 9.6.2.2. Схемы прозвучивания меры CO-2 для измерении затухания поперечных волн. Преобразователь П121-5,0-40°-Ø8.

Ультразвуковой дефектоскоп УД9812 позволяет проводить измерение затухания без каких- либо вычислений. Принцип измерений состоит в следующем. По эхосигналам от образца проводят настройку ВРЧ прибора в стиле «Теор. Расчет». Предварительно указывают закон изменения амплитуды эхосигнала с расстоянием до отражателя, т.е. закон расхождения ультразвукового поля. Тогда, после настройки, прибор приводит в соответствие теоретическую зависимость с представленными эхосигналами. Величину затухания получают как параметр теоретической кривой.

Рассмотрим данный способ измерения на примере аттестации меры СО-2 по затуханию поперечных волн.

Схема прозвучивания меры CO-2 показана на Рис. 9.6.2.2. Отметим, что прозвучивается один и тот же угол меры с различных позиций ПЭП. Есть специфическое требование к отражателю (угол CO-2), а именно – притупление угла или фаска на нем не должна превышать 0,1 мм.

В данной методике используется преобразователь П121-5,0-40°-Ø8. Ширина его диаграммы направленности не более 5°, что практически исключает искажение амплитуды эхосигнала, связанное с квази-искривлением акустической оси. Преобразователь обеспечивает прозвучивание угла СО-2 в положениях 1 и 2 (Рис. 9.6.2.2.) в дальней зоне ультразвукового поля. Таким образом, соблюдаются все требования методики измерения затухания.

В процессе измерений выполняют следующие действия.

- 1. Начальная настройка прибора. Проводят настройку электро-акустического тракта и диапазонов наблюдения сигналов. Эхосигналы от меры CO-2 должны находится в пределах экрана.
- 2. Включают систему ВРЧ в стиле «Теор. Расчет». Устанавливают параметры кривой ВРЧ тип кривой R^{^1} (бесконечный отражатель см. П4.9.) и указывают скорость поперечных волн в данной мере СО-2.
- 3. Настройка точки «Начало» кривой ВРЧ (Рис. 9.6.2.3.А). Находят максимум эхосигнала от угла СО-2 в положении ПЭП 1. Выбирают для редактирования точку ВРЧ «Начало». Кнопками ←, → устанавливают положение точки на середину эхосигнала, затем кнопками ↑, ↓ устанавливают амплитуду эхосигнала на уровень 0дБ по развертке экрана.
- 4. Настройка точки «Конец» кривой ВРЧ (Рис. 9.6.2.3.Б). Находят максимум эхосигнала от угла СО-2 в положении ПЭП 2. Выбирают для редактирования точку ВРЧ «Конец» и

проводят аналогичные операции настройки. Кнопками ←, → устанавливают положение точки на середину эхосигнала, затем кнопками ↑, ↓ устанавливают амплитуду эхосигнала на уровень 0дБ по развертке экрана. Настройка закончена.

5. Проводят считывание коэффициента затухания в окне параметров кривой ВРЧ (Рис. 9.6.2.3.В).

Затухание в мере CO-2 непосредственно влияет на амплитуду эхосигнала от отверстия Ø6 мм. Как известно, по данному эхосигналу производится настройка опорного уровня чувствительности (П9.4.15.), измерение угла ввода (П9.4.9.) и ширины диаграммы направленности. Меры CO-2 с высоким затуханием волн создают существенные погрешности в настройках и измерениях.

Оценим максимально допустимое затухание волн в СО-2. Примем, что в образцах СО-2 разброс амплитуд эхосигналов от отверстия Ø6 мм, связанный с затуханием, не должен превышать 2 дБ. Наиболее сильное уменьшение амплитуды будет наблюдаться для наклонных преобразователей с частотой 5МГц, угол ввода 70°, при прозвучивании отверстия Ø6 мм на глубине 44мм. Для этих условий длина пробега волн от точки ввода ПЭП до отверстия и обратно составляет приблизительно 250мм. Нетрудно видеть, что в СО-2 максимально допустимое затухание поперечных волн – 8 дБ/м.

Рис. 9.6.2.3. Вид экрана прибора в процессе измерения затухания волн в мере CO-2. А) Настройка точки ВРЧ «Начало». Б) Настройка точки ВРЧ «Конец».

В) Считывание затухания как параметра теоретической кривой.

10 Поверка дефектоскопа УД9812

Настоящая методика распространяется на ультразвуковой дефектоскоп УД9812, и устанавливает методику его первичной и периодической поверки. Периодичность поверки – один раз в год.

10.1 Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 10.1.1. Операции поверки проводятся аккредитованными метрологическими службами. В случае отрицательного результата при проведении одной из операций поверку дефектоскопа прекращают, прибор бракуют.

Таблица 10.1.1.

Номера пунктов	Наименование операций	Обязательность проведения операции при	
в документе	Transferre burne enepadim	первичной поверке	периодической поверке
10.6.1.	Внешний осмотр	Да	Дa
10.6.2.	Опробование	Дa	Да
10.6.3.	Определение параметров зондирующего импульса	Да	Дa
10.6.4.	Определение максимальной чувствительности приемника	Да	Дa
10.6.5.	Определение полосы пропускания приемника	Дa	Да
10.6.6.	Определение параметров амплитудной характеристики приемного тракта	Дa	Дa
10.6.7.	Определение погрешности измерения отношения амплитуд сигналов на входе приемника, дБ	Да	Да
10.6.8.	Определение динамического диапазона системы временной регулировки чувствительности	Дa	Да
10.6.9.	Определение погрешности пороговых индикаторов АСД#1, АСД#2, дБ	Дa	Дa
10.6.10.	Определение погрешности глубиномера, мкс	Дa	Дa
10.6.11.	Определение частоты ультразвуковых колебаний ПЭП	Да	Да
10.6.12.	Определение длительности эхосигнала ПЭП	Дa	Нет
10.6.13.	Определение длительности реверберационно- шумовой характеристики (РШХ)	Дa	Дa
10.6.14.	Определение условной чувствительности	Дa	Дa
10.6.15.	Определение точки ввода и стрелы ультразвуковых наклонных преобразователей	Да	Да
10.6.16.	Определение углов ввода ультразвуковых преобразователей	Да	Да
10.6.17.	Проверка работоспособности информационной системы дефектоскопа	Дa	Дa

10.2 Средства поверки

Для поверки дефектоскопов используют следующие средства измерений:

– осциллограф Tektronics TDS 3032 (амплитуда сигналов 0,05...300 B, ПГ не более $\pm 5\%$;

длительность сигналов 0,010 мкс...50 мс, ПГ не более $\pm 5\%$),

- генератор сигналов Г4-102 (частота 0,1... 50 МГц, ПГ не более 1%; амплитуда не менее 0,5 В),
- временной селектор ВС-9603 (рабочие частоты 0,1...30 МГц; длительность стробимпульса 3...200 мкс; задержка строб-импульса 10...2000 мкс; ослабление сигнала не менее 60 дБ),
- аттенюатор широкополосный АТТ-90-0,1-95/2 (рабочие частоты 0,01...30 МГц; ослабление сигналов 0...90 дБ; ПГ в диапазонах ослабления: 0...19,9 дБ ±0,03 дБ; 20...39,9 дБ ±0,05 дБ; 40...59,9 дБ ±0,10 дБ; 60...90 дБ ±0,20 дБ),
- частотомер CNT-85 (наличие режима измерения длительности импульсов, разрешающая способность по времени 1,0 нс, относительная погрешность измерения длительности не более 5*10⁻⁶),
- меры СО-2 и СО-3 из комплекта КМУ-55724 (скорость продольных волн 5940±60 м/с; скорость поперечных волн 3260±40 м/с; стандартное время в мере СО-2 20±0,4 мкс, стандартное время в мере СО-3 34,0±0,6 мкс).
- эквивалентная нагрузка 50 Ом (ПГ ±5%).

Все средства измерений должны быть поверены в органах Росстандарта РФ или в аккредитованных метрологических службах. Допускается замена оборудования на аналогичное при условии, что параметры приборов удовлетворяют требования данное методики поверки.

10.3 Требования к квалификации поверителя

К проведению поверки допускают поверителей аккредитованных метрологических служб изучивших устройство и принцип работы аппаратуры по эксплуатационной документации.

10.4 Требования безопасности

При проведении поверки должны соблюдаться следующие требования безопасности:

10.4.1 При проведении поверки должны быть соблюдены требования ГОСТ 12.3.019-80.

10.4.2. Освещенность рабочего места поверителя должна соответствовать требованиям санитарных норм СН 245-71.

10.4.3. При проведении поверки необходимо подробно изучить руководство по эксплуатации поверяемого ультразвукового дефектоскопа.

10.5 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

10.5.1. Температура окружающего воздуха - 24±5°С.

10.5.2. Относительная влажность воздуха - не более 80%.

10.5.3. Напряжение питания сети – 220±10В, частота – 50±5Гц.

10.5.4. Внешние электрические и магнитные поля должны отсутствовать, либо находиться в пределах, не влияющих на работу прибора.

10.6 Проведение поверки

При проведении поверки выполняются все операции записанные в данном разделе.

10.6.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено: - соответствие комплектности прибора прилагаемой документации,

- отсутствие механических повреждений дефектоскопа,

- наличие заводского или регистрационного номера на приборе,

- все надписи на аппаратуре должны быть четкими и ясными,

- разъемы должны быть чистыми.

10.6.2 Опробование

Подключить ультразвуковой дефектоскоп к сети переменного тока 220В с помощью источника питания ИП-9414. Включить дефектоскоп. При успешном включении должен загореться индикатор питания и должна появиться «картинка» на экране прибора.

Проверить действие всех кнопок на передней панели прибора. Кнопки должны работать согласно техническому описанию на дефектоскоп.

10.6.3 Определение параметров зондирующего импульса

Техническое описание генератора зондирующих импульсов и его основные параметры рассмотрены в П.4.3. Поверка параметров ГЗИ производится в схеме измерений Рис. 10.6.3.

Рис. 10.6.3.1. Схема определения параметров генератора зондирующих импульсов. 1 – осциллограф, 2 – эквивалентная нагрузка 50 Ом, 3 – ультразвуковой дефектоскоп, K1,K2 – коаксиальные кабели, T1 – тройник коаксиальный.

- Соберите схему, как показано на Рис. 10.6.3.1. Здесь эквивалентная нагрузка состоит из сопротивления 50 Ом. Подключите эквивалентную нагрузку к разъему «ЗИ» прибора. Подключите осциллограф к эквивалентной нагрузке. Используйте пробник делитель 1:10. Входное сопротивление пробника должно быть не менее 1 Мом. Входная емкость пробника - не более 5 пФ.
- 2. Установите масштабы развертки осциллографа: по вертикали 50 В/дел, по горизонтали 40 100 нс/дел.
- 3. В меню дефектоскопа УД9812 «Настройка» «Электро-акустический тракт» «Частота ПЭП» установите частоту преобразователя 2,5 МГц. Этой частоте соответствует длительность зондирующего импульса 200 нс.
- 4. Установите устойчивую синхронизацию осциллографа от переднего фронта зондирующего импульса. Весь импульс должен наблюдаться на экране осциллографа (Рис. 10.6.3.2.). По экрану осциллографа определите амплитуду и длительность зондирующего импульса. Отметим, что длительность ЗИ определяется на уровне ¹/₂ амплитуды сигнала.
- 5. Растяните развертку осциллографа до масштаба 5 10 нс/дел (Рис. 10.6.3.3.). Проведите измерение длительности переднего фронта зондирующего импульса. Длительность фронта определяется как время нарастания импульса от 10% до 90% амплитуды сигнала.

Повторите выше указанные измерения для всех стандартных частот преобразователей. Проведите сравнение полученных результатов с паспортными данными дефектоскопа.

Амплитуда ЗИ должна быть в пределах 250 ±50 В. Допустимое отклонение длительности ЗИ для различных частот ПЭП составляет ±10%. Длительность переднего фронта ЗИ не должна превышать 20 нс.

Рис. 10.6.3.2. Определение амплитуды и длительности зондирующего импульса.

Рис. 10.6.3.3. Определение длительности переднего фронта зондирующего импульса.

10.6.4 Определение максимальной чувствительности приемника

Максимальную чувствительность приемника ультразвукового дефектоскопа выражают в виде минимальной амплитуды входного сигнала, который воспринимается на стандартном уровне.

Максимальная чувствительность прибора УД9812 меняется в зависимости от режима работы приемника. Например, в режиме отображения высокочастотных сигналов максимальная чувствительность на 6 дБ меньше, чем в режиме отображения детектированных сигналов. Поскольку в приборе УД9812 используется цифровая обработка сигналов (фильтрация, детектирование, отсечка) изменение максимальной чувствительности определяется алгоритмом

вычислений. Отсутствует погрешность настройки приемника, связанная с разбросом параметров электронных компонентов. Все экземпляры приборов имеют одинаковые соотношения максимальной чувствительности в зависимости от режима работы. Поэтому нет необходимости определения максимальной чувствительность в одном наибора во всех режимах. Достаточно проверить максимальную чувствительность в одном наиболее часто используемом режиме работы приемника.

Рис. 10.6.4.1. Схема определения параметров ультразвукового дефектоскопа. 1 – генератор сигналов, 2 – временной селектор, 3 – аттенюатор, 4 – дефектоскоп.

Рис. 10.6.4.2. Вид тест-сигнала на входе приемника дефектоскопа.

Порядок определение максимальной чувствительности. Соберите схему измерений Рис. 10.6.4.1. С помощью пробника делителя 1:10 подключите осциллограф к дефектоскопу, разъем «Вход». Измерение проводится следующим образом.

- 1. Установите ослабление аттенюатора 0 дБ.
- 2. Установите частоту генератора сигналов 2,5 МГц. Амплитуду сигнала высокой частоты на входе приемника установите **U0** = 200 мВ. С помощью осциллографа проконтролируйте параметры тест-сигнала, подаваемого на вход дефектоскопа Рис. 10.6.4.2.
- 3. С помощью селектора BC-9603 установите задержку тест-сигнала 30 50 мкс и длительность тест сигнала 15 20 мкс.

- Проведите настройку дефектоскопа УД9812. В меню «Электроакустический тракт» -«Частота ПЭП» установите частоту 2,5МГц. В меню «Экран» - «Усиление» установите максимальное усиление приемника 80 дБ. Отключите систему временной регулировки чувствительности.
- 5. Увеличивайте ослабление аттенюатора до тех пор пока амплитуда тест-сигнал не установится на стандартный уровень дефектоскопа (Рис.10.6.4.3.). Зафиксируйте показание аттенюатора **К0** [дБ].
- 6. Проведите расчет максимальной чувствительности Umax по формуле.

Umax = $U0*10^{K0/20}$

Максимальная чувствительность приемника УД9812 должна находится в диапазоне 150±50 мкВ.

Рис.10.6.4.3. Вид тест-сигнала при измерении максимальной чувствительности приемника дефектоскопа.

10.6.5 Определение полосы пропускания приемника

Приемник ультразвукового дефектоскопа работает в некотором диапазоне частот, который формируется цифровым фильтром. Амплитудно-частотная характеристика (АЧХ) ограничена в полосе частот от FH до FB. Значения граничных частот FH, FB определяются на уровне –6дБ, т.е. при уменьшении коэффициента усиления приемника в два раза.

При определении полосы пропускания приемника выполняют следующие операции.

- 1. Соберите схему измерений Рис.10.6.4.1. С помощью пробника делителя 1:10 подключите осциллограф к дефектоскопу, разъем «Вход». Для определения граничных частот полосы пропускания приемника выполняют следующие действия
- 2. Установите параметры тест-сигнала: частота 2,5 МГц, амплитуда 200 мВ, задержка тестсигнала 30 – 50 мкс и длительность тест сигнала 15–20 мкс. Проконтролируйте параметры тест-сигнала с помощью осциллографа. В дальнейшем необходимо поддерживать амплитуду тест-сигнала на уровне 200 мВ. Поэтому осциллограф должен быть постоянно подключен к разъему «Вход» дефектоскопа.

- 3. Проведите настройку прибора УД9812. В меню «Настройка» «Электроакустический тракт» «Частота ПЭП» установите частоту преобразователя 2,5 МГц. Затем в меню «Электро-акустический тракт» «подробней» отключите фильтр НЧ. В поле граничной частоты фильтра должна быть надпись «нет».
- 4. Установите опорный уровень чувствительности УД9812. Выберите меню «Экран» «Усиление» и регулируя усиление приемника, установите амплитуду тест-сигнала на уровень 0дБ по разметке экрана (Рис. 10.6.5.1. А).
- 5. Измерение нижней граничной частоты Fн. Уменьшайте частоту тест-сигнала до тех пор пока его амплитуда на экране прибора не уменьшится до уровня –6 дБ (Рис. 10.6.5.1. Б). По шкале частот генератора сигналов (Г4-102) зафиксируйте частоту Fн. В процессе измерений амплитуда тест-сигнала на входе дефектоскопа должна быть постоянной -200 мВ. Следите за амплитудой тест-сигнала по экрану осциллографа. Если необходимо, проведите подстройку амплитуды с помощью органов управления генератора сигналов.
- 6. Измерение верхней граничной частоты Fв. Измерение проводится аналогично предыдущему с той лишь разницей, что частота тест-сигнала увеличивается до тех пор пока амплитуда тест-сигнала не уменьшится на 6 дБ.
- 7. Проведите измерение частот Fн, Fв для всех фильтов высокой частоты. Для этого в меню «Электро-акустический тракт» - «подробней» - «Фильтр ВЧ» установите тип фильтра и выполняйте операции по пунктам 3, 4 и 5.

Допуск на верхнюю граничную частоту фильтров составляет 10% от номинального значения. Нижняя граничная частота фильтров не должна превышать номинальное значение.

Рис. 10.6.5.1. Вид тест-сигнала на экране дефектоскопа при определении полосы пропускания приемника.

А) Настройка тест-сигнала с частотой 2,5 МГц на уровень 0 дБ.

Б) Уменьшение амплитуды тест-сигнала на граничной частоте Fн или Fв (уровень –6 дБ).

10.6.6 Определение параметров амплитудной характеристики приемного тракта

Поверка параметров амплитудной характеристики дефектоскопа УД9812 производится в режиме отображения детектированных сигналов. Используется схема измерений Рис. 10.6.4.1. Вначале амплитуда тест-сигнала настраивается на стандартный уровень дефектоскопа (0 дБ разметки экрана), затем с помощью образцового аттенюатора производят установку тест-сигнала на уровни +3 дБ, -6 дБ, -12дБ и –20 дБ экрана дефектоскопа, считывают ослабление

аттенюатора и определяют погрешности амплитудной характеристики. Вид тест-сигнала при определении погрешностей амплитудной характеристики показан на Рис.10.6.6.1.

Последовательность действий при поверке амплитудного динамического диапазона дефектоскопа (схема измерений Рис. 10.6.4.1.).

- Проведите начальную установку параметров тест-сигнала. Частота 2,5 МГц, задержка 30 50 мкс, длительность 15 20 мкс. Установите ослабление аттенюатора 6 дБ. Проконтролируйте с помощью осциллографа амплитуду тест-сигнала на входе приемника дефектоскопа должно быть около 100 мВ. Картинка на экране дефектоскопа должна быть устойчивой.
- Проведите настройку прибора УД9812. Отключите систему ВРЧ дефектоскопа. В меню «Настройка» - «Электроакустический тракт» установите частоту преобразователя 2,5МГц и режим отображения детектированных сигналов. Затем в меню «Электро-акустический тракт» - «подробней» установите фильтр НЧ – 0,75 МГц.
- Настройка амплитуды тест сигнала на стандартный уровень дефектоскопа. В меню «Экран», регулируя усиление прибора, установите амплитуду тест-сигнала на уровень 0 дБ по разметке экрана - Рис.10.6.6.1.А. Если необходимо, проведите точную настройку с помощью ручки «амплитуда» генератора сигналов Г4-102. Зафиксируйте ослабление аттенюатора Кст [дБ].
- 4. Определение погрешности амплитудной характеристики на верхней границе динамического диапазона (+3 дБ). Уменьшайте ослабление аттенюатора до тех пор пока амплитуда тест-сигнала не достигнет уровня +3 дБ по экрану. Зафиксируйте ослабление аттенюатора Кв [дБ]. Погрешность амплитудной характеристики на верхней границе динамического диапазона определяют по формуле ΔK_{+3дБ} = Kcт – Kв – 3дБ.
- 5. Определение погрешности амплитудной характеристики на нижней границе динамического диапазона (-20 дБ). Увеличивайте ослабление аттенюатора до тех пор пока амплитуда тест-сигнала не достигнет уровня -20 дБ по экрану. Зафиксируйте ослабление аттенюатора Кн [дБ]. Погрешность амплитудной характеристики на нижней границе динамического диапазона определяют по формуле ΔK_{-20дБ} = Кст – Кн + 20дБ.
- 6. Определение погрешности амплитудной характеристики в пределах динамического диапазона. С помощью аттенюатора установите амплитуду тест-сигнала на уровни –6дБ и –12дБ. Зафиксируйте ослабление аттенюатора для этих уровней К_{-6дБ} и К_{-12дБ}. Погрешность амплитудной характеристики в динамическом диапазоне определяют по формулам ΔК_{-6дБ} = Кст К_{-6дБ} + 6дБ и ΔК_{-12дБ} = Кст К_{-12дБ} + 12дБ.

Рис.10.6.6.1. Определение параметров амплитудной характеристики приемного тракта дефектоскопа.

А) Установка амплитуды тест-сигнала на стандартный уровень – 0дБ.

- Б) Определение погрешности амплитудной характеристики на уровне –6 дБ.
- В) Определение погрешности амплитудной характеристики на уровне –12 дБ.

Погрешности амплитудной характеристики дефектоскопа не должны превышать следующих значений

$$\begin{split} |\Delta K_{^{+}3 \pi B}| &\leq 0,3 \pi B, \\ |\Delta K_{^{-}6 \pi B}| &\leq 0,3 \pi B, \\ |\Delta K_{^{-}12 \pi B}| &\leq 0,5 \pi B, \\ |\Delta K_{^{-}20 \pi B}| &\leq 1,0 \pi B. \end{split}$$

10.6.7 Определение погрешности измерения отношения амплитуд сигналов на входе приемника

Погрешность измерения отношения амплитуд сигналов на входе приемника определяется с помощью образцового аттенюатора АТТ-90-0,1-95/2. Используется схема измерений Рис. 10.6.4.1. Тест-сигнал ослабляется образцовым аттенюатором и затем усиливается приемником дефектоскопа. Ослабление аттенюатора и усиление приемника сравнивается по индикатору, в качестве которого служит экран дефектоскопа.

Амплитуда тест-сигнала устанавливается на стандартный уровень с помощью образцового аттенюатора АТТ 90-0,1-95/2

Рис. 10.6.7.1. Вид тест-сигнала при определении погрешности измерения отношения амплитуд сигналов на входе приемника дефектоскопа.

Порядок определения погрешности коэффициента усиления приемника дефектоскопа (схема измерений Рис. 10.6.4.1.).

- Проведите настройку прибора УД9812. Отключите систему ВРЧ дефектоскопа. В меню «Настройка» - «Электроакустический тракт» установите частоту преобразователя 2,5МГц и режим отображения детектированных сигналов. Затем в меню «Электро-акустический тракт» - «подробней» установите диапазон входных сигналов «Макс. эхо» ±1В. Кроме того установите фильтр НЧ – 0,75 МГц. В меню «Экран» установите ширину развертки 100 мкс и сдвиг развертки -2 мкс. В этом же меню установите усиление дефектоскопа 40дБ.
- Проведите начальную установку параметров тест-сигнала. Частота 2,5 МГц, задержка 20 50 мкс, длительность 15 30 мкс. Установите ослабление аттенюатора 40дБ. Картинка на экране дефектоскопа должна быть устойчивой.
- 3. Настройка амплитуды тест-сигнала на стандартный уровень дефектоскопа. С помощью ручки «амплитуда» генератора сигналов Г4-102 проведите точную настройку амплитуды

тест-сигнала на уровень 0дБ экрана дефектоскопа (Рис. 10.6.7.1.). Обозначим ослабление аттенюатора при данной настройке K₀ = 40дБ.

- Определение погрешности коэффициента усиления приемника в точке 50дБ. Установите усиление дефектоскопа 50дБ. Изменяя ослабление аттенюатора установите амплитуду тест-сигнала на уровень 0дБ по экрану дефектоскопа (Рис. 10.6.7.1.). Зафиксируйте ослабление аттенюатора К₁ [дБ]. Погрешность коэффициента усиления приемника в точке 50 дБ определяют по формуле ΔК_{50дБ} = (К₁ - К₀) – (50дБ – 40дБ).
- 5. Проведите определение погрешности коэффициента усиления приемника в точках 0, 10, 20, 30, 60, 70, 80 дБ по аналогии с выше приведенным пунктом.

Погрешность коэффициента усиления приемника не должна превышать ±1 дБ во всем диапазоне регулировки чувствительности от 0 до 80 дБ.

10.6.8 Определение динамического диапазона системы временной регулировки чувствительности

В приборе УД9812 реализована цифровая система управления чувствительностью. Разделение общего усиления приемника по системам (усиление, захват, ВРЧ) производится искусственно с помощью программного обеспечения прибора. Поэтому максимальный динамический диапазон ВРЧ равен динамическому диапазону усиления приемника.

Рис.10.6.8.1. Вид тест-сигнала на экране дефектоскопа при определении динамического диапазона ВРЧ.

- А) Нижняя граница динамического диапазона.
- Б) Верхняя граница динамического диапазона.

Порядок определения динамического диапазона системы временной регулировки чувствительности (схема измерений Рис. 10.6.4.1.).

- 1. Проведите настройку прибора УД9812. В меню «Настройка» «Электроакустический тракт» установите частоту преобразователя 2,5МГц и режим отображения детектированных сигналов. Затем в меню «Электроакустический тракт» «подробней» установите диапазон входных сигналов «Макс. эхо» ±1В. В меню «Экран» установите ширину развертки 100 мкс и сдвиг развертки -2мкс. В этом же меню установите усиление дефектоскопа 40-60дБ.
- Проведите начальную установку параметров тест-сигнала. Частота 2,5 МГц, задержка 20 50 мкс, длительность 15 30 мкс. Установите ослабление аттенюатора с таким

расчетом, чтобы амплитуда тест-сигнала находилась на уровне 0дБ на экране УД9812. Картинка на экране дефектоскопа должна быть устойчивой.

- 3. Включите систему ВРЧ дефектоскопа. В меню «Настройка» «ВРЧ» в верхнем элементе установите «ВКЛ», затем в нижнем элементе меню выберите стиль ВРЧ «Ручной» и перейдите в режим редактирования кривой ВРЧ. Вид меню показан на Рис.10.6.8.1. Далее удалите действующую настройку ВРЧ путем выбора элемента меню «Сброс настройки». В результате коррекция усиления во всех точках ВРЧ устанавливается в ноль. Точки ВРЧ группируются в пределах экрана прибора. Если необходимо, с помощью образцового аттенюатора проведите подстройку амплитуды тест-сигнала на уровень 0дБ по экрану.
- 4. Определение нижней границы динамического диапазона ВРЧ. Выберите точку ВРЧ 01. Установите положение данной точки за тест-сигналом. Уменьшайте до предела усиление в точке ВРЧ 01. Затем, изменяя ослабление образцового аттенюатора, установите амплитуду тест-сигнала на уровень 0дБ по экрану. Вид экрана дефектоскопа после выполнения указанных операций представлен на Рис.10.6.8.1.А. Зафиксируйте ослабление образцового аттенюатора Кн [дБ].
- 5. Определение верхней границы динамического диапазона ВРЧ. Увеличивайте до предела усиление в точке ВРЧ 01. Затем, изменяя ослабление образцового аттенюатора, установите амплитуду тест-сигнала на уровень 0дБ по экрану (Рис.10.6.8.1.Б). Зафиксируйте ослабление образцового аттенюатора Кв [дБ].

Динамический диапазон ВРЧ рассчитывают по формуле ΔK врч = Kв – Kн. Дефектоскоп считается прошедшим данную операцию поверки, если динамический диапазон ВРЧ находится в пределах 80 ±1 дБ.

10.6.9 Определение погрешности пороговых индикаторов АСД#1, АСД#2

Определение погрешности порогового индикатора производится в схеме измерений Рис.10.6.4.1.

Рис. 10.6.9.1. Вид тест-сигнала на экране дефектоскопа при определении погрешности срабатывания порогового индикатора.

 Проведите настройку прибора УД9812. Отключите систему ВРЧ дефектоскопа. В меню «Настройка» - «Электроакустический тракт» установите частоту преобразователя 2,5МГц и режим отображения детектированных сигналов. Затем в меню «Электроакустический тракт» - «подробней» установите диапазон входных сигналов «Макс. эхо» ±1В. Установите фильтр НЧ – 0,75 МГц. В меню «Экран» установите ширину развертки 100 мкс и сдвиг развертки -2 мкс. В этом же меню установите усиление дефектоскопа 20-30дБ.

- Проведите начальную установку параметров тест-сигнала. Частота 2,5 МГц, задержка 20 50 мкс, длительность 15 30 мкс. Установите ослабление аттенюатора таким образом, чтобы амплитуда тест-сигнала находилась на уровне 0 дБ по разметке экрана. Картинка на экране дефектоскопа должна быть устойчивой.
- 3. Настройка системы АСД#1. В режиме «Настройка» выберите элемент главного меню «АСД#1» (внизу экрана). Затем в окне редактирования параметров выберите элемент меню «АСД#1», тогда открывается окно «Доп. параметры». Здесь установите уровень фиксации –6дБ и поисковый уровень –6дБ, включите световую и звуковую сигнализацию. Закройте окно «Доп. параметры». В окне редактирования установите режим «ЭХО». Далее установите браковочный уровень такой, чтобы линия «#1» находилась на разметке экрана 0дБ. Установите начало и ширину строба АСД#1 таким образом, чтобы захватывался тест-сигнал (Рис. 10.6.9.1.).
- 4. Определение погрешностей пороговых индикаторов АСД#1. Меняя ослабление аттенюатора АТТ-90-0,1-95/2 найдите минимальную амплитуду тест-сигнала, при которой начинает срабатывать пороговый индикатор на браковочном уровне АСД#1. Зафиксируйте ослабление К1. Уменьшайте ослабление аттенюатора АТТ-90-0,1-95/2 (тест-сигнал увеличивается) и найдите его амплитуду, для которой устойчиво обнаруживает тест-сигнал на браковочном уровне АСД#1 (Рис. 10.6.9.1.А). Зафиксируйте ослабление К2. Погрешность порогового индикатора АСД#1 определяют по формуле ΔK = K1 K2 [дБ]. Проведите аналогичные операции для определения погрешности порогового индикатора на на уровне фиксации «Ф» и поисковом уровне «П» АСД#1 (Рис. 10.6.9.1.Б, В).
- 5. Настройка системы АСД#2. В режиме «Настройка» выберите элемент главного меню «АСД#2» (внизу экрана). Затем в окне редактирования параметров выберите элемент меню «АСД#2», тогда открывается окно «Доп. параметры». Здесь включите световую и звуковую сигнализацию. Закройте окно «Доп. параметры». В окне редактирования установите режим «ЭХО». Далее установите браковочный уровень такой, чтобы линия «#2» находилась на разметке экрана 0дБ. Установите начало и ширину строба АСД#2 таким образом, чтобы захватывался тест-сигнал.
- 6. Определение погрешности порогового индикатора АСД#2. Меняя ослабление аттенюатора АТТ-90-0,1-95/2 найдите минимальную амплитуду тест-сигнала, при которой начинает срабатывать пороговый индикатор АСД#2 линия «#2». Зафиксируйте ослабление К1. Уменьшайте ослабление аттенюатора АТТ-90-0,1-95/2 (тест-сигнал увеличивается) и найдите его амплитуду, для которой устойчиво обнаруживает тест-сигнал на браковочном уровне АСД#2. Зафиксируйте ослабление К2. Погрешность порогового индикатора АСД#2 определяют по формуле ΔК = К1 К2 [дБ].

Погрешность срабатывания пороговых индикаторов АСД#1 и АСД#2 не должна превышать величины 0,5дБ.

10.6.10 Определение погрешности глубиномера

В приборе УД9812 нормируется только погрешность измерителя интервала времени (инструментальная погрешность).

Для определения погрешности глубиномера используется схема измерений, показанная на Рис.10.6.10.1.А. Здесь временной селектор ВС-9603 используется как устройство, вырабатывающее импульсы фиксированной длительности – маркерные импульсы.
Синхронизация селектора осуществляется от зондирующего импульса дефектоскопа УД9812. Измерение длительности маркерных импульсов с высокой точностью производится частотомером CNT-85. Одновременно с помощью поверяемого дефектоскопа определяется интервал времени от зондирующего импульса до заднего фронта маркерного импульса. Временные соотношения показаны на Рис. 10.6.10.1.Б.

Указанные операции выполняют не менее чем в 8-ми точках диапазона развертки УД9812. Затем проводится статистическая обработка результатов измерений по модели линейной регрессии. В приборе УД9812 наивысшая точность определения задержки наблюдается при измерении по переходу эхосигнала через ноль. Поэтому поверка погрешности глубиномера производится в этом режиме.

Рис.10.6.10.1. Определения погрешности глубиномера. А) Схема измерений. Б) Вид сигналов.

Рис.10.6.10.2. Вид заднего фронта маркерного импульса на экране прибора.

Порядок определения погрешности глубиномера.

- 1. Соберите схему измерений как показано на Рис.10.6.10.1.А. Для подключения оборудования используйте коаксиальные кабели.
- 2. Настройте стабильную синхронизацию временного селектора ВС-9603 от зондирующего импульса дефектоскопа. Получите сигнал заднего фронта маркерного импульса на экране УД9812.

- 3. Проведите настройку электроакустического тракта прибора УД9812. В меню «Настройка» «Электроакустический тракт» установите частоту ПЭП 5,0 МГц. Выберите вид сигнала ВЧ. В меню «Подробней» установите «Макс. Эхо» ±10В.
- 4. Проведите настройку селектора УД9812. В меню «Селектор», «Уст. измерений» укажите режим «через 0» и установите вывод задержки Т. Вывод остальных параметров можно отключить. Настройте положение порога селектора и ширину маркера захвата как показано на Рис. 10.6.10.2.
- 5. Проведите настройку частотомера CNT-85. Установите режим работы измерение длительности импульсов. Установите положительную полярность исследуемых импульсов. Настройте порог компаратора сигналов таким образом, чтобы частотомер выводил стабильные показания длительности маркерного импульса.
- 6. Проведите измерение длительности маркерного импульса с помощью частотомера CNT-85 и определите задержку заднего фронта маркерного импульса поверяемым прибором УД9812. При измерении задержки ширина развертки УД9812 устанавливается не более 12 мкс. Измерения выполняются не менее чем в 8-ми точках поверяемого диапазона 4-2000 мкс. Рекомендованные значения длительностей маркерного импульса 10, 50, 100, 250, 500, 1000, 1500, 1990 мкс.
- 7. Проведите расчет параметров линейной регрессии Q1, Q2 по данным измерений частотомера T_i и дефектоскопа X_i. Здесь N количество измерений. В расчетах требуется учитывать не менее 7 значащих цифр.

$$Q1 = \frac{\sum_{i=1}^{N} X_i T_i - \frac{1}{N} \sum_{i=1}^{N} X_i \sum_{i=1}^{N} T_i}{\sum_{i=1}^{N} (T_i - \frac{1}{N} \sum_{i=1}^{N} T_i)^2}, \quad Q2 = \frac{1}{N} \sum_{i=1}^{N} X_i - \frac{Q1}{N} \sum_{i=1}^{N} T_i$$

8. Проверка аддитивной составляющей погрешности. Определите по ниже указанной формуле аддитивную составляющую погрешности для каждого измерения.

$$\Delta T_i = X_i - Q1^*T_i - Q2$$

Проведите статистические расчеты по ГОСТ 8.207-76. Найдите дисперсию погрешности (среднее квадратичное отклонение) и доверительные границы погрешности ΔT_a в интервале вероятности 0,95. Коэффициент Стьюдента для выборки из 8 реализаций случайной величины равен t=2,306.

$$S = \sqrt{\frac{\sum_{i=1}^{N} \Delta T_i^2}{N(N-1)}}, \quad \Delta T_a = t \cdot S$$

Проверка считается успешной, если ΔT_a не превышает величину 0,006 мкс.

9. Проверка мультипликативной составляющей погрешности. Параметр Tm= |1-Q1| характеризует погрешность, зависящую от измеряемой величины. Проверка считается успешной, если значение Tm не превышает 0,00003.

Примечание. Погрешность глубиномера конкретного прибора УД9812, определяется выражением

 $\Delta T = \Delta T_a + Tm *T$ (мкс), T - измеренное значение (мкс).

10.6.11 Определение частоты ультразвуковых колебаний ПЭП

Частота ультразвуковых колебаний ПЭП, т.е. частота колебаний эхосигнала, определяется с помощью измерения временного интервала, в который укладывается целое число периодов.

Рис. 10.6.11.1. Процесс определения частоты ультразвуковых колебаний преобразователя. Эхосигнал от отверстия Ø6мм в мере CO-2. Преобразователь П121-2,5-50°-Ø14.

- Подключите преобразователь к дефектоскопу. Проведите настройку электроакустического тракта прибора. В меню «Настройка» - «Электроакустический тракт» установите частоту ПЭП. Выберите вид сигнала – ВЧ. В меню «Подробней» установите «Макс. Эхо» - ±1В. В меню «Экран» установите разметку развертки – мкс. Установите режим задержки по переходу через ноль – в меню селектора «Уст. измерений» выберите режим «через 0». Включите вывод времени задержки (Т), вывод остальных параметров можно отключить.
- 2. Установите преобразователь на меру СО-2, предварительно смазав его поверхность контактной жидкостью. Найдите максимум эхосигнала от отверстия Ø6мм. Зафиксируйте преобразователь в этом положении.
- 3. Регулируя ширину и сдвиг развертки (меню «Экран») установите эхосигнал по центру экрана и максимально растяните его (Рис. 10.6.12.1.).
- 4. С помощью селектора проведите измерение моментов времени Т1 и Т2, в которых эхосигнал переходит через нулевое значение (Рис. 10.6.11.1.). Причем в интервале Т1 Т2 должно укладываться не менее 3-х периодов колебаний.
- 5. Определите средний период колебаний Tcp=(T2-T1)/N, где N- число периодов в интевале T1 T2.
- 6. Определите частоту ультразвуковых колебаний F=1/Tcp.
- 7. Проведите проверку на допустимое отклонение частоты ПЭП. Для преобразователей с частотой менее 1МГц допустимое отклонение частоты от номинальной ±10%, а для преобразователей с частотами 1 МГц и выше допустимое отклонение ±20%.

10.6.12 Определение длительности эхосигнала ПЭП

Длительность эхосигнала ультразвукового преобразователя и скорость звука в изделии разрешающую формирующими способность являются параметрами, по дальности. Длительность эхосигнала определяется методом сравнения, используется система АСД#2.

Рис. 10.6.12.1. Определение длительности эхосигнала преобразователя. Преобразователь П121-1,8-50°-14*14. Эхосигнал от отверстия Ø6мм в мере CO-2.

- Подключите преобразователь к дефектоскопу. Проведите настройку электро-1. акустического тракта прибора. В меню «Настройка» - «Электроакустический тракт» установите частоту ПЭП. Выберите вид сигнала – НЧ. Уровень отсечки установите менее –12дБ. В меню «Подробней» установите «Макс. Эхо» - ±1В. В меню «Экран» установите разметку развертки – мкс.
- Установите преобразователь на меру СО-2, предварительно смазав его поверхность 2. Найдите максимум эхосигнала от отверстия Ø6мм. контактной жилкостью. Зафиксируйте преобразователь в этом положении.
- Регулируя ширину и сдвиг развертки (меню «Экран») установите эхосигнал по центру 3. экрана и максимально растяните его (Рис. 10.6.12.1.). Амплитуду эхосигнала установите на стандартный уровень (ОдБ по разметке экрана).
- Выберите меню «АСД#2». Пользуясь элементами меню, установите положение строба 4. на уровень -6дБ, начало и конец строба совместите с передним и задним фронтами эхосигнала (Рис. 10.6.12.1.). В этом случае ширина строба АСД#2 равна длительности эхосигнала на уровне -6дБ от максимума.
- 5. Проведите сравнение длительности эхосигнала с максимально допустимым значением для данного преобразователя. Используйте таблицу 10.6.12.1.

Таблица 10	0.6.12.1.
------------	-----------

		Таолица 10.0.12.1.
Частота	Типовое значение	Максимально допустимое
ультразвукового	длительности	значение длительности
преобразователя, МГц	эхосигнала, мкс	эхосигнала, мкс
1,25	2,1	2,9
1,8	1,6	2,2
2,0	1,4	2,0
2,5	1,0	1,9
4,0	0,9	1,5

5,0	0,7	1,0
8,0	0,5	0,7
10,0	0,4	0,6

10.6.13 Определение длительности реверберационно-шумовой характеристики (РШХ)

Реверберационно-шумовая характеристика это сигнал, возникающий в преобразователе, после воздействия зондирующего импульса. РШХ складывается из затухающих колебаний пъезоэлемента, акустических сигналов, переотраженных в преобразователе, и сигнала реакции электрической цепи, в которую включен ПЭП. РШХ однозначно определяет размер мертвой зоны преобразователя.

Длительность РШХ определяют после настройки чувствительности по эхосигналу от отверстия Ø6мм в мере CO-2.

Выполните следующие операции.

- 1. Подключите преобразователь к дефектоскопу. Проведите настройку электроакустического тракта прибора. В меню «Настройка» - «Электроакустический тракт» установите частоту ПЭП. Выберите вид сигнала – НЧ. Установите уровень отсечки сигнала менее –12дБ. В меню «Подробней» установите «Макс. Эхо» - ±1В.
- 2. Отключите систему временной регулировки чувствительности.
- 3. По таблицам 10.6.13.1. и 10.6.13.2. определите на какой глубине нужно прозвучивать отверстие Ø6мм в мере CO-2. Установите преобразователь на соответствующую грань меры, предварительно смазав его поверхность контактной жидкостью. Найдите максимум эхосигнала от отверстия Ø6мм. Зафиксируйте преобразователь в этом положении. При необходимости отрегулируйте ширину развертки для комфортного наблюдения эхосигнала от отверстия Ø6мм.
- 4. Установите амплитуду эхосигнала от отверстия Ø6мм на уровень 0дБ по разметке экрана. Растяните развертку для удобного наблюдения сигнала РШХ, Рис. 10.6.13.1. Проведите измерение длительности РШХ на уровне -12дБ по разметке экрана.
- 5. Проведите сравнение полученных данных с допустимыми значениями длительности РШХ по таблицам 10.6.13.1., 10.6.13.2. и 10.6.13.3. Если длительность РШХ превышает допустимое значение, преобразователь признается не прошедшим поверку.

Рис. 10.6.13.1. Определение длительности РШХ. Преобразователь П121-2,5-40°-Ø14.

Частота П'ЭП	Условная	Условия измерений. Наименование	
МГц	не менее, дБ	и шл, не облес, мкс	меры, отражатсяв, тяубина залегания
1,25	80 (95)	12 (8)	Мера СО-2, отв. Ø6мм на глубине 44мм
1,8	70 (85)	10 (7)	Мера СО-2, отв. Ø6мм на глубине 44мм
2,0	70 (85)	10 (6)	Мера СО-2, отв. Ø6мм на глубине 44мм
2,5	70 (85)	10 (6)	Мера СО-2, отв. Ø6мм на глубине 44мм
4,0	65 (75)	9 (6)	Мера СО-2, отв. Ø6мм на глубине 44мм
5,0	60 (75)	8 (5)	Мера СО-2, отв. Ø6мм на глубине 44мм
8,0	40 (55)	5 (4)	Мера СО-2, отв. Ø6мм на глубине 15мм
10,0	30 (50)	4 (3)	Мера СО-2, отв. Ø6мм на глубине 15мм

Таблица 10.6.13.1. Условная чувствительность и длительность РШХ для прямых совмещенных ультразвуковых преобразователей, тип П111.

Примечание. В скобках указаны типовые значения параметров ПЭП.

Табл	ица 10.6.13.2.	Условна	я чувст	вительнос	ть и ,	длительность	РШХ	для прямых
раз	дельно-совме	щенных у	ультраз	вуковых п	реоб	разователей,	тип П1	12.

Частота ПЭП,	Условная чувствительность,	Длительность РШХ, не более,	Условия измерений. Наименование меры, отражатель, глубина залегания
МГц	не менее, дБ	мкс	
1,25	34 (45)	7 (4)	Мера СО-2, отв. Ø6мм на глубине 44мм
1,8	34 (45)	6 (4)	Мера СО-2, отв. Ø6мм на глубине 44мм
2,0	34 (45)	5 (3)	Мера СО-2, отв. Ø6мм на глубине 44мм
2,5	35 (50)	5 (3)	Мера СО-2, отв. Ø6мм на глубине 44мм
4,0	30 (40)	5 (3)	Мера СО-2, отв. Ø6мм на глубине 44мм
5,0	30 (40)	4 (3)	Мера СО-2, отв. Ø6мм на глубине 44мм
8,0	35 (50)	4 (3)	Мера СО-2, отв. Ø6мм на глубине 15мм
10,0	30 (40)	4 (2)	Мера СО-2, отв. Ø6мм на глубине 15мм

Примечание. В скобках указаны типовые значения параметров ПЭП.

Таблица 10.6.13.3. Условная чувствительность и длительность РШХ для наклонных совмещенных ультразвуковых преобразователей, тип П121.

Частота ПЭП,	Угол ввода,	Условная чувствите-	Длитель- ность РШХ,	Условия измерений. Наименование меры, отражатель, глубина залегания
МГц	град	льность, не	не более, мкс	
		менее, дБ		
1,25	40 - 60	40 (50)	35 (24)	Мера СО-2, отв. Ø6мм на глубине 44мм
1,25	65-70	25 (35)	35 (24)	Мера СО-2, отв. Ø6мм на глубине 44мм
1,8	40 - 60	40 (50)	35 (24)	Мера СО-2, отв. Ø6мм на глубине 44мм
1,8	65-70	25 (35)	35 (24)	Мера СО-2, отв. Ø6мм на глубине 44мм
2,0	40 - 60	40 (50)	35 (24)	Мера СО-2, отв. Ø6мм на глубине 44мм
2,0	65-70	25 (35)	35 (24)	Мера СО-2, отв. Ø6мм на глубине 44мм
2,5	40 - 60	40 (50)	35 (24)	Мера СО-2, отв. Ø6мм на глубине 44мм
2,5	65-70	25 (35)	35 (24)	Мера СО-2, отв. Ø6мм на глубине 44мм
4,0	40 - 60	25 (35)	25 (18)	Мера СО-2, отв. Ø6мм на глубине 44мм
4,0	65-70	15 (25)	25 (18)	Мера СО-2, отв. Ø6мм на глубине 44мм
5,0	40 - 60	25 (35)	25 (18)	Мера СО-2, отв. Ø6мм на глубине 44мм

5,0	65-70	30 (45)	25 (18)	Мера СО-2, отв. Ø6мм на глубине 15мм
5,0	75	15 (25)	25 (18)	Мера СО-2, отв. Ø6мм на глубине 15мм
8,0	40 - 60	30 (45)	12 (8)	Мера СО-2, отв. Ø6мм на глубине 15мм
8,0	65-70	10 (25)	18 (12)	Мера СО-2, отв. Ø6мм на глубине 15мм
8,0	75	5 (15)	18 (12)	Мера СО-2, отв. Ø6мм на глубине 15мм
10,0	40 - 60	23 (35)	10 (7)	Мера СО-2, отв. Ø6мм на глубине 15мм
10,0	65-70	6 (20)	16 (11)	Мера СО-2, отв. Ø6мм на глубине 15мм
10,0	75	1 (12)	16 (11)	Мера СО-2, отв. Ø6мм на глубине 15мм

Примечание. В скобках указаны типовые значения параметров ПЭП.

10.6.14 Определение условной чувствительности

Условную чувствительность определяют по мере CO-2 как запас чувствительности прибора при настройке по эхосигналу от отверстия Ø6мм. Существует два варианта измерений – при прозвучивании отверстия Ø6мм на глубине 44мм или на глубине 15мм (с нижней грани меры CO-2).

Выполняют следующие операции.

- 1. Подключите преобразователь к дефектоскопу с помощью кабеля. Проведите настройку электроакустического тракта прибора. В меню «Настройка» «Электроакустический тракт» установите частоту ПЭП. Выберите вид сигнала НЧ. В меню «Подробней» установите «Макс. Эхо» ±1В.
- 2. Отключите систему временной регулировки чувствительности.
- 3. Установите преобразователь на верхнюю (нижнюю) грань меры СО-2 предварительно смазав поверхность контактной жидкостью. Перемещая ПЭП по поверхности образца найдите положение, в котором наблюдается максимум эхосигнала от отверстия Ø6мм. Если необходимо скорректируйте ширину развертки дефектоскопа в меню «Экран». Зафиксируйте ПЭП.
- 4. С помощью регулировки усиления приемника установите амплитуду эхосигнала на уровень 0дБ по разметке экрана. Зафиксируйте усиление прибора N (дБ).
- 5. Определите условную чувствительность как разность между максимальным усилением и найденным 80-N (дБ).
- 6. Проведите сравнение полученного значения условной чувствительности с минимальнодопустимым значением, таблицам 10.6.13.1., 10.6.13.2. и 10.6.13.3.

10.6.15 Определение точки ввода и стрелы наклонных преобразователей

Точка ввода и стрела наклонного преобразователя определяется по мере СО-3. При определении указанных параметров выполняют следующие операции.

- Подключите наклонный преобразователь к дефектоскопу с помощью совмещенного кабеля. Проведите настройку электроакустического тракта прибора. В меню «Настройка» - «Электроакустический тракт» установите частоту ПЭП. Выберите вид сигнала – НЧ. В меню «Подробней» установите «Макс. Эхо» - ±1В.
- 2. Установите преобразователь на верхнюю грань меры СО-3 предварительно смазав поверхность контактной жидкостью. Перемещая ПЭП по поверхности меры найдите положение, в котором наблюдается максимум эхосигнала от ее боковой цилиндрической поверхности. Если необходимо скорректируйте ширину развертки дефектоскопа в меню «Экран». Зафиксируйте ПЭП. Проверьте совпадение точки ввода с меткой центра меры СО-3. Если отклонение превышает 1мм, нанесите новую точку ввода на корпус ПЭП с двух сторон.

- 3. Определите стрелу ПЭП как расстояние от его передней кромки до точки ввода. Используйте шкалу, нанесенную на боковую грань меры СО-3.
- 4. Проведите сравнение стрелы ПЭП с максимально допустимым значением, указанным в таблице 10.6.15.1. Если стрела преобразователя превышает максимально допустимое значение, преобразователь признается не прошедшим поверку.

TT		Т	100.110.10.10.11
Частота		І иповое значение	Максимально
ультразвукового	Угол ввода, град	стрелы ПЭП, мм	допустимое значение
преобразователя,			стрелы ПЭП, мм
МГц			
1,25	40 - 60	14	18
1,25	65-70	17	22
1,8	40 - 60	10	12
1,8	65-70	12	14
2,0	40 - 60	10	12
2,0	65-70	12	14
2,5	40 - 60	9	11
2,5	65-70	10	12
4,0	40 - 60	10	12
4,0	65-70	12	14
5,0	40 - 60	7	9
5,0	65-70	8	10
5,0	75	9	11
8,0	40 - 60	4	7
8,0	65-70	5	8
8,0	75	6	9
10,0	40 - 60	4	7
10,0	65-70	5	8
10,0	75	6	9

10.6.16 Определение углов ввода ультразвуковых преобразователей

Угол ввода наклонного преобразователя определяют по мере СО-2. Выполняют следующие операции.

- 1. Подключите наклонный преобразователь к дефектоскопу с помощью совмещенного кабеля. Проведите настройку электроакустического тракта прибора. В меню «Настройка» «Электроакустический тракт» установите частоту ПЭП. Выберите вид сигнала НЧ. В меню «Подробней» установите «Макс. Эхо» ±1В.
- 2. Установите преобразователь на верхнюю грань меры СО-2 предварительно смазав поверхность контактной жидкостью. Перемещая ПЭП по поверхности образца найдите положение, в котором наблюдается максимум эхосигнала от отверстия Ø6 мм. Если необходимо скорректируйте ширину развертки дефектоскопа в меню «Экран». Зафиксируйте ПЭП. Проведите отсчет угла ввода по шкале, нанесенной на боковую грань меры СО-2. Отсчет производится от точки ввода.
- 3. Определите отклонение угла ввода от номинального значения.
- 4. Для углов ввода до 60° включительно отклонение не должно превышать 2°. Для углов ввода более 60° допустимое отклонение составляет 3°.

10.6.17 Проверка работоспособности информационной системы дефектоскопа

Здесь проверяются функции информационной системы дефектоскопа – считывание данных из ультразвукового преобразователя, запоминание-загрузка настройки прибора, запоминание-просмотр результатов контроля, работа системы записи-воспроизведения голосовых сообщений, и работоспособность канала передачи данных в ЭВМ.

- 1. Тест однопроводного интерфейса (проверка чтения данных ультразвукового преобразователя). Подключите ультразвуковой преобразователь к дефектоскопу с помощью штатного кабеля. Соедините контакт однопроводного интерфейса преобразователя с контактом «ПЭП» на передней панели прибора. Считывание данных преобразователя происходит автоматически. На экран прибора выводится окно с информацией о преобразователе. Сравните тип и номер ПЭП с данными в окне.
- 2. Тест запоминания настройки прибора и извлечение ее из памяти. Установите режим «Настройка» и проведите произвольную настройку всех систем прибора. Запишите параметры настройки на бумагу. Нажмите кнопку «Данные», выберите один из файлов, запишите комментарии и голосовое сообщение, затем сохраните настройку в этом файле. Управление меню подробно изложено в Пб.9. Выключите дефектоскоп. Включите дефектоскоп. Установите режим «Настройка». Нажмите кнопку «Данные» и выберите файл ранее сделанной настройки. Проверьте комментарии. Прослушайте голосовое сообщение. Загрузите настройку. Сравните реальные параметры настройки дефектоскопа с записями.
- 3. Тест запоминания результатов контроля и их просмотр. Установите режим «УЗ контроль», в меню «Функции» проведите запоминание каких-либо сигналов и их пробегов. Зафиксируйте эхосигналы на экране прибора с помощью меню «СТОП». Вызовите меню записи данных в файл (кнопка «Данные»). Здесь, запишите комментарии и голосовое сообщение, затем сохраните результаты контроля в этом файле. Управление меню записи-просмотра результатов контроля подробно рассматривается в П7.5. Выключите дефектоскоп. Включите дефектоскоп. Установите режим «УЗ контроль», нажмите кнопку «Данные» и перейдите в режим просмотра результатов контроля. Выберите файл, в который был записан тест. Проверьте комментарии. Прослушайте голосовое сообщение. Проверьте вид эхосигналов и данные из меню «Функции».

Рис.10.6.17.1. Отображение экрана дефектоскопа на мониторе ЭВМ.

4. Проверка связи прибора с ЭВМ. Соедините прибор с персональным компьютером с помощью кабеля USB. Включите прибор. Включите компьютер. После загрузки компьютера запустите программу чтения экрана дефектоскопа UD9812_USB_Scan_DX.exe, которая поставляется в комплекте с прибором. Если необходимо инсталлируйте драйвер USB. Следуйте рекомендациям по установке программ. При правильной работе программного обеспечения на экран монитора выводится окно Рис.10.6.17.1., в котором отображается содержимое экрана УД9812 в реальном времени. Проверьте правильность передачи информации.

Проверка работоспособности информационной системы дефектоскопа считается успешной, если все тесты, приведенные в данном разделе, выполняются без ошибок.

10.7 Оформление результатов поверки

Результаты поверки заносят в протокол, форма которого приведена в Приложении 1.

В случае положительных результатов поверки оформляется протокол поверки установленной формы (см. Приложение 1).

В случае отрицательных результатов поверки выдается извещение о не пригодности ультразвукового дефектоскопа УД9812.

Допускается проведение поверки прибора в ограниченном диапазоне параметров. В этом случае в протоколе поверки должны быть указаны параметры прибора, их конкретные диапазоны и максимальная погрешность измерений.

11 Неисправности и методы их устранения

Некоторые виды неисправностей и способы их устранения приведены в таблице 11.1.

		Таблица 11.1.
Наименование неисправности, внешнее	Вероятная	Метод
проявление и дополнительные	причина	устранения
признаки		
1. При попытке включения прибора выдается	Полный разряд	Провести заряд
звуковой сигнал, прибор не включается.	аккумулятора.	аккумулятора или
		заменить его.
2. Нет подсветки матричного дисплея.	Выход из строя	Требуется ремонт на
	лампы CCFL в	предприятии
	дисплее.	изготовителе.
3. Нет реакции прибора на нажатие кнопки	Отказ кнопочной	Требуется замена всей
на передней панели.	клавиатуры	клавиатуры на
		передней панели.
4. Нет эхосигналов с ультразвукового	Обрыв в кабеле,	Ремонт кабеля.
преобразователя.	соединяющем	
	прибор и ПЭП.	
5. Не производится считывание данных	Выход из строя	Замена
преобразователя через однопроводной	микросхемы,	преобразователя.
интерфейс	установленной в	
	ПЭП	

12 Маркирование и пломбирование прибора

Наименование прибора "УД9812" нанесено на передней панели. Заводской номер прибора и дата изготовления наносится на шильдике, установленном на задней панели.

Товарный знак предприятия-изготовителя наносится на задней панели прибора. На одном из винтов, соединяющем заднюю панель прибора, устанавливается пломба с номером приемки ОТК.

13 Правила хранения и транспортирования прибора

Дефектоскопы УД9812 должны храниться в сухом помещении в соответствии с условиями хранения 1 по ГОСТ 15150-69. В помещении для хранения не должно быть токопроводящей пыли, паров кислот, щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию.

Дефектоскопы должны храниться на стеллажах. Расстояние между стенками, полом хранилища и дефектоскопом должно быть не менее 100 мм. Расстояние между отопительными устройствами хранилищ и дефектоскопами должно быть не менее 0,5 м.

Упакованные дефектоскопы могут транспортироваться любым видом транспорта, предохраняющим их от непосредственного воздействия осадков в соответствии с ГОСТ 12997-76 и "Общими правилами перевозки грузов".

При перевозке воздушным транспортом упакованные дефектоскопы располагаются в герметизированных и отапливаемых отсеках.

Расстановка и крепление ящиков с дефектоскопами в транспортных средствах должны исключать возможность их смещения, ударов и толчков.

14 Гарантийные обязательства и сведения о рекламациях

Изготовитель гарантирует соответствие ультразвукового дефектоскопа УД9812 требованиям технических условий при соблюдении потребителем правил эксплуатации, транспортирования и хранения, установленных техническими условиями 46.5537.001.01.000 ТУ.

Гарантийный срок хранения дефектоскопа - 1 год со дня его изготовления.

Гарантийный срок эксплуатации дефектоскопа - 3 года со дня ввода его в эксплуатацию.

Средний срок службы дефектоскопа - не менее 5 лет.

Регистрируются все предъявленные рекламации и их краткое содержание. При отказе в работе или неисправности дефектоскопа в период гарантии изготовителя, потребителем должен быть составлен акт о необходимости ремонта и отправки дефектоскопа предприятию-изготовителю или вызова его представителя.

Таблица 15.1.

Дата	Содержание рекламации	Каким образом и кем восстановлено изделие	Подпись

Приложение 1

Дата поверки

Наименование поверяющей организации

15 ПРОТОКОЛ ПОВЕРКИ

Вид поверки - _____

1. СИ: Дефектоскоп ультразвуковой УД9812 № _____

- 2. Владелец: ____
- 3. Средства поверки:

4. НД на поверку: 46.5537.001.01.000 РЭ «Дефектоскоп ультразвуковой УД9812. Руководство по эксплуатации» Раздел 10. «Поверка дефектоскопа УД9812».

5. Условия поверки: температура ____°С, относительная влажность воздуха _____%

Гезультаты поверки						
	Допускаемые	Действи-	Вывод			
Операции поверки и определяемые параметры	значения	тельные				
		значения				
Внешний осмотр	Годен					
Опробование	Годен					
Параметры зондирующего импульса:						
Амплитуда	$250\pm50~\mathrm{B}$					
Длительность переднего фронта	не более 20нс					
Длительность импульса для частоты ПЭП						
10 МГц	50 нс					
8 МГц	62,5 нс					
5 МГц	100 нс					
4 МГц	125 нс					
2,5 МГц	200 нс					
2,0 МГц	250 нс					
1,8 МГц	280 нс					
1,25 МГц	400 нс					
1,0 МГц	500 нс					
0,8 МГц	625 нс					
0,62 МГц	800 нс					
Максимальная чувствительность приемника	150 ± 50 мкВ					
дефектоскопа						
Полоса пропускания приемника (граничные частоты	0,6÷12 МГц,					
фильтов ВЧ Fн ÷Fв)	0,8÷12 МГц,					
	1,2÷12 МГц,					
	0.6÷6.5 МГн.					
	0.8÷6.5 ΜΓιι					
	1 2÷6 5 ΜΓιι					
	1,2:0,5 ілі ц.					
Параметры амплитудной характеристики приемного						
тракта. Погрешность амплитудной характеристики						
приемника на уровне						
+3 дБ,	± 0,3 дБ					
0 дБ (настройка)						
-6 дБ,	± 0,3 дБ					

п

-12дБ,	± 0,5 дБ		
-20дБ	± 1,0 дБ		
Погрешность измерения отношения амплитуд сигналов			
на входе приемника – погрешность установки усиления			
приемника в различных точках динамического диапазона.			
ОдБ,	± 1,0 дБ		
10дБ.	± 1,0 дБ		
20дБ,	± 1.0 лБ		
30дБ,	+ 1.0 π Б		
40дБ (настройка)	0	0	
50дБ,	+ 1.0 π Б		
60дБ,	$\pm 1,0 \ \pi 5$		
70дБ,	$\pm 1,0 \ \mu B$ + 1.0 μB		
80дБ.	± 1,0 дD ± 1.0 дГ		
Π	± 1,0 ДБ		
динамический диапазон временной регулировки	80 ±1 дБ		
Чувствительности			
Погрешность пороговых индикаторов АСД#1, АСД#2	Не более		
	±0,5 дБ		
Погрешность глубиномера.	$\pm (0,006+$		
	0,00003*Т)мкс		
Частота ультразвуковых колебаний ПЭП			
Длительность эхосигнала ПЭП			
Длительность реверберационно-шумовой характеристики			
ПЭП			
И ПОП			
у словная чувствительность 11.911			
Стрела ультразвукового наклонного преобразователя			
Угол ввода ПЭП			
Проверка работоспособности информационной системы	Годен		
дефектоскопа			

Заключение по результатам поверки: ультразвуковой дефектоскоп УД9812 № _____ признан соответствующим установленным в описании типа метрологическим требованиям и пригодным к применению в сфере государственного регулирования обеспечения единства измерений.

Поверитель

(подпись)

(ФИО)

Приложение 2

Марка сплава	Скорость (мм/мкс)	Температурный
(стали)	при 20°С	коэффициент скорости
		(мм/мкс/°С)
Железо "Ярмко"	5,930	0,5-0,7
СТЗ	5,930	0,5-0,7
CT10	5,920	0,5-0,7
У10	5,925	0,5-0,7
СТ40	5,925	0,5-0,7
Y8	5,900	0,5-0,7
СТ50	5,920	0,5-0,7
45Л-1	5,925	0,5-0,7
ШХ-15	5,965	0,5-0,7
40X13	6,070	0,5-0,7
30ΧΓCΑ	5,915	0,5-0,7
30XMA	5,950	0,5-0,7
08X17H14M3	5,720	0,5-0,7
1X18H9T	5,720	0,5-0,7
12X18H10T	5,760	0,5-0,7
ЭП33	5,650	0,5-0,7
ЭП428	5,990	0,5-0,7
ЭП543	5,750	0,5-0,7
30XPA	5,900	0,5-0,7
ЭП814	5,900	0,5-0,7
ЭИ437БУ	5,990	0,5-0,7
ЭИ612	5,680	0,5-0,7
ЭИ617	5,930	0,5-0,7
ЭИ766А	6,020	0,5-0,7
ЭИ826	5,930	0,5-0,7
ХН77ТЮР	6,080	0,5-0,7
40XHMA	5,600	0,5-0,7
ХН70ВМТЮ	5,960	0,5-0,7
XH35BT	5,580	0,5-0,7
Х15Н15ГС	5,400	0,5-0,7
20ГСНДИ	6,060	0,5-0,7

16	Таблица	скоростей і	тродольных	ультразв	уковых	волн в	сталях
				•	•		

17 Таблица скоростей продольных ультразвуковых волн в сплавах на основе титана

Марка сплава	Скорость (мм/мкс)	Температурный
	при 20°С	коэффициент скорости
		(мм/мкс/°С)
BT6C	6,150	0,6 - 0,7
OT4	6,180	0,6 - 0,7
BT4	6,090	0,6 - 0,7
BT14	6,105	0,6 - 0,7
BT9	6,180	0,6 - 0,7
3B	6,170	0,6 - 0,7
BT1	6,080	0,6 - 0,7

Приложение 2 (Продолжение)

Марка сплава	Скорость (мм/мкс)	Температурный	
	при 20 С	коэффициент скорости мм/мкс/°С	
Д16	6.380	1,0 - 1,2	
Д16АТ	6,365	1,0 - 1,2	
Д16ТПП	6,420	1,0 - 1,2	
B95	6,280	1,0 - 1,2	
В95Т1ПП	6,330	1,0 - 1,2	
АМГ2	6,390	1,0 - 1,2	
АМГ2М	6,390	1,0 - 1,2	
АМГ3	6,400	1,0 - 1,2	
АМГ5	6,390	1,0 - 1,2	
АМГ5М	6,380	1,0 - 1,2	
АМГ6	6,380	1,0 - 1,2	
АМГ6М	6,405	1,0 - 1,2	
АД	6.360	1,0 - 1,2	
АД1	6,385	1,0 - 1,2	
Д1	6,365	1,0 - 1,2	
АМЦ	6,405	1,0 - 1,2	
АК4-1	6,390	1,0 - 1,2	

18 Таблица скоростей продольных ультразвуковых волн в сплавах алюминия

19 Таблица скоростей продольных ультразвуковых волн в сплавах на основе меди

Марка сплава	Скорость (мм/мкс) при 20 °С	Температурный коэффициент
		скорости (мм/мкс/°С)
Медь	4,680	0,5 - 0,6
M1	4,780	0,5 - 0,6
M2	4,750	0,5 - 0,6
ЛС52-1	4,050	0,5 - 0,6
ЛС59-1	4,360	0,5 - 0,6
ЛС63	4,180	0,5 - 0,6
Л62	4,680	0,5 - 0,6
Л63	4,440	0,5 - 0,6
Л68	4,260	0,5 - 0,6
БрХ0,8Д	4,850	0,5 - 0,6
БрХ0,8Д	4,860	0,5 - 0,6
БрКМЦ3-1	4,820	0,5 - 0,6
БрОЦ4-3	4,550	0,5 - 0,6
БрАМц9-2	4,060	0,5 - 0,6
БрАЖМц10-3-1,5	4,900	0,5 - 0,6